Effective lattice oxygen (Olatt) activation at low temperatures has long been a challenge in catalytic oxidation reactions. Traditional thermal catalytic soot combustion, even with Pt/Pd catalysts, is inefficient at exhaust temperatures below 200 °C, particularly under conditions of frequent idling. Herein, we report an effective strategy utilizing non-thermal plasma (NTP) to activate Olatt in Ce1-xCoxO2-δ catalysts, achieving dramatic enhancement of the soot combustion rate at low temperatures. At 200 °C and 4.3 W (discharge power, Pdis), NTP-Ce0.8Co0.2O2-δ achieved 96.9% soot conversion (XC), 99.0% CO2 selectivity (S(CO2)) and a maximum energy conversion efficiency (Emax) of 14.7 g kWh-1. Compared with previously reported results, NTP-Ce0.8Co0.2O2-δ exhibits the highest S(CO2) and Emax values. Remarkably, even without heating, XC, Emax, and S(CO2) reached 92.1%, 6.1 g kWh-1, and 97.5%, respectively, at 6.3 W (Pdis). The results of characterization and theoretical calculation demonstrated that Co dopes into the CeO2 crystal lattice and forms an asymmetric Ce-O-Co structure, making oxygen “easy come, easy go”, thereby enabling the rapid combustion of soot over NTP-Ce0.8Co0.2O2-δ. This study highlights the great potential of NTP for activating Olatt and provides valuable insights into the design of efficient NTP-adapted catalysts for oxidation reactions.