Chinese Journal of Catalysis ›› 2015, Vol. 36 ›› Issue (10): 1679-1685.DOI: 10.1016/S1872-2067(15)60943-3

• Articles • Previous Articles     Next Articles

Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor

Marcela Kralovaa, Irina Levchukb, Vit Kaspareka, Mika Sillanpaab, Jaroslav Cihlara   

  1. a Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic;
    b Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
  • Received:2015-02-28 Revised:2015-06-17 Online:2015-09-26 Published:2015-09-26

Abstract:

Heterogeneous photocatalysis is a very effective method for the decomposition of a whole range of water pollutants. In this work, the influence of synthesis conditions on the physical properties and photocatalytic activity of lanthanide-doped titanium dioxide photocatalysts was evaluated. Titanium dioxide was prepared via sol-gel synthesis followed by a solid state reaction under different conditions, including different temperatures (450, 550, and 650 ℃) and reaction times (4, 8, and 12 h). The crystalline phase of the products was determined to be solely anatase using X-ray diffraction, and this result was confirmed by Raman spectroscopy. The structure, as well as particle size, of the samples was examined using scanning electron microscopy, and their specific surface area was calculated using Brunauer-Emmett-Teller analysis. The band gap energy of the samples was examined using ultraviolet-visible spectroscopy from diffuse reflectance measurements. Doping with lanthanide species, dysprosium and praseodymium, caused the absorption edge to shift towards higher wavelengths and enhanced photocatalytic activity in comparison with pure titania. The photocatalytic activity of the samples was studied in terms of the degradation of the commonly used herbicide metazachlor. The decomposition was carried under UV light and the decrease in metazachlor concentration was measured using high performance liquid chromatography. The best performance was obtained for samples treated at 550 ℃ for 8 h during the solid state reaction step.

Key words: Lanthanide-doped titania, Dysprosium, Praseodymium, Synthesis condition, Photocatalytic decomposition, Metazachlor