Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (12): 1822-1840.DOI: 10.1016/S1872-2067(19)63284-5
• Review • Previous Articles Next Articles
Liangliang Huanga, Yuqin Zoua, Dawei Chena,b, Shuangyin Wanga,c,d
Received:
2019-01-05
Revised:
2019-02-13
Online:
2019-12-18
Published:
2019-09-21
Liangliang Huang, Yuqin Zou, Dawei Chen, Shuangyin Wang. Electronic structure regulation on layered double hydroxides for oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2019, 40(12): 1822-1840.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63284-5
[1] M. Gong, H. Dai, Nano Res., 2015, 8, 23-29. [2] X. Ren, R. Ge, Y. Zhang, D. Liu, D. Wu, X. Sun, B. Du, Q. Wei, J. Mater. Chem. A, 2017, 5, 7291-7294. [3] J. Li, G. Du, X. Cheng, P. Feng, X. Luo, Chin. J Catal., 2018, 39, 982-987. [4] A. C. Thenuwara, S. L. Shumlas, N. H. Attanayake, Y. V. Aulin, I. G. Mckendry, Q. Qiao, Y. Zhu, E. Borguet, M. J. Zdilla, D. R. Strongin, ACS Catal., 2016, 6, 7739-7743. [5] H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang, Q. Gao, Adv. Funct. Mater., 2016, 26, 5590-5598. [6] W. Xu, H. Wang, Chin. J Catal., 2017, 38, 991-1005. [7] H. Li, Y. Tan, P. Liu, C. Guo, M. Luo, J. Han, T. Lin, F. Huang, M. Chen, Adv. Mater., 2016, 28, 8945-8949. [8] R. Xiang, C. Tong, Y. Wang, L. Peng, Y. Nie, L. Li, X. Huang, Z. Wei, Chin. J Catal., 2018, 39, 1736-1745. [9] C. G. Morales-Guio, L. Liardet, X. Hu, J. Am. Chem. Soc., 2016, 138, 8946-8957. [10] L. Peng, S. S. A. Shah, Z. Wei, Chin. J Catal., 2018, 39, 1575-1593. [11] H. Qian, J. Tang, Z. Wang, J. Kim, J. H. Kim, S. M. Alshehri, E. Yanmaz, X. Wang, Y. Yamauchi, Chem. Eur. J., 2016, 22, 18259-18264. [12] F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, J. Am. Chem. Soc., 2018, 140, 7748-7759. [13] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365. [14] S. Sulay, K. Koshal, S. Sri, P. S. R. Ganesh, J. Indian Inst. Sci., 2016, 96, 325-350. [15] A. Irshad, N. Munichandraiah, RSC Adv., 2016, 6, 30552-30563. [16] X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, J. Qiu, Adv. Energy Mater., 2017, 7, 1602148. [17] D. Zhou, L. He, R. Zhang, S. Hao, X. Hou, Z. Liu, G. Du, A. M. Asiri, C. Zheng, X. Sun, Chem. Eur. J., 2017, 23, 15601-15606. [18] J. Jin, J. Yin, H. Liu, P. Xi, Chin. J. Catal., 2019, 40, 43-51. [19] S. Dou, X. Li, L. Tao, J. Huo, S. Wang, Chem. Commun., 2016, 52, 9727-9730. [20] X. Ji, L. Cui, D. Liu, S. Hao, J. Liu, F. Qu, Y. Ma, G. Du, A. M. Asiri, X. Sun, Chem. Commun., 2017, 53, 3070-3073. [21] J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong, H. Xu, Adv. Funct. Mater., 2017, 27, 1606497. [22] X. Zhang, X. Zhang, H. Xu, Z. Wu, H. Wang, Y. Liang, Adv. Funct. Mater., 2017, 27, 1606635. [23] X. Zou, Y. Liu, G. D. Li, Y. Wu, D. P. Liu, W. Li, H. W. Li, D. Wang, Y. Zhang, X. Zou, Adv. Mater., 2017, 29, 1700404. [24] T. T. H. Nguyen, J. Lee, J. Bae, B. Lim, Chem. Eur. J., 2018, 24, 4724-4728. [25] K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, J. Am. Chem. Soc., 2015, 137, 4119-4125. [26] X. Lu, W. L. Yim, B. H. R. Suryanto, C. Zhao, J. Am. Chem. Soc., 2015, 137, 2901-2907. [27] N. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J Catal., 2018, 39, 228-244. [28] S. Chen, Y. Zhao, B. Sun, Z. Ao, X. Xie, Y. Wei, G. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 3306-3313. [29] H. Jin, S. J. Mao, G. Zhan, F. Xu, X. Bao, Y. Wang, J. Mater. Chem. A, 2017, 5, 1078-1084. [30] L. Wang, C. Lin, D. Huang, F. Zhang, M. Wang, J. Jin, ACS Appl. Mater. Interfaces, 2014, 6, 10172-10180. [31] J. Li, Q. Zhuang, P. Xu, D. Zhang, L. Wei, D. Yuan, Chin. J Catal., 2018, 39,1403-1410. [32] Y. Liu, C. Hao, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, X. Chong, S. Wei, J. Am. Chem. Soc., 2014, 136, 15670-15675. [33] J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, Adv. Mater., 2017, 29, 1704681. [34] C. C. Hou, S. Cao, W. F. Fu, Y. Chen, ACS Appl. Mater. Interfaces, 2015, 7, 28412-28419. [35] Y. Bai, H. Zhang, Y. Feng, L. Fang, Y. Wang, J. Mater. Chem. A, 2016, 4, 9072-9079. [36] Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. S. Rawat, H. J. Fan, Angew. Chem. Int. Ed., 2016, 55, 8670-8674. [37] P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 2015, 54, 14710-14714. [38] P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed., 2016, 55, 2488-2492. [39] L. Yu, H. Zhou, J. Sun, F. Qin, D. Luo, L. Xie, F. Yu, J. Bao, Y. Li, Y. Yu, S. Chen, Z. Ren, Nano Energy, 2017, 41, 327-336. [40] F. Song, X. Hu, J. Am. Chem. Soc., 2014, 136, 16481-16484. [41] J. Jiang, A. Zhang, L. Li, L. Ai, J. Power Sources, 2015, 278, 445-451. [42] L. Feng, A. Li, Y. Li, J. Liu, L. Wang, L. Huang, Y. Wang, X. Ge, Chempluschem, 2017, 82, 483-488. [43] C. Li, M. Wei, D. G. Evans, X. Duan, Catal. Today, 2015, 247, 163-169. [44] X. Guo, F. Zhang, D. G. Evans, X. Duan, Chem. Commun., 2010, 46, 5197-5210. [45] M. Zhao, Q. Zhao, B. Li, H. Xue, H. Pang, C. Chen, Nanoscale, 2017, 9, 15206-15225. [46] L. Huang, R. Chen, C. Xie, C. Chen, Y. Wang, Y. Zeng, D. Chen, S. Wang, Nanoscale, 2018, 10, 13638-13644. [47] J. Duan, S. Chen, A. Vasileff, S. Z. Qiao, ACS Nano, 2016, 10, 8738-8745. [48] H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, J. Song, Nano Letters, 2015, 15, 1421-1427. [49] Y. Wang, D. Yan, S. El Hankari, Y. Zou, S. Wang, Adv. Sci., 2018, 5, 1800064. [50] X. Han, C. Yu, J. Yang, C. Zhao, H. Huang, Z. Liu, P. M. Ajayan, J. Qiu, Adv. Mater. Interfaces, 2016, 3, 1500782. [51] H. Xu, Y. Yuan, Y. Liao, J. Xie, Z. Qu, W. Shangguan, N. Yan, Environ. Sci. Technol., 2017, 51, 10109-10116. [52] J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev., 2017, 46, 5950-5974. [53] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Energy Mater., 2016, 6, 1502585. [54] F. Song, X. Hu, Nat. Commun., 2014, 5, 4477. [55] W. Zhang, K. Zhou, Small, 2017, 13, 1700806. [56] J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, S. Wei, Angew. Chem. Int. Ed., 2015, 54, 8722-8727. [57] D. Chen, M. Qiao, Y. R. Lu, L. Hao, D. Liu, C. L. Dong, Y. Li, S. Wang, Angew. Chem. Int. Ed., 2018, 57, 8691-8696. [58] T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan, J. S. Hu, J. Am. Chem. Soc., 2017, 139, 8320-8328. [59] C. Hu, L. Zhang, Z. J. Zhao, A. Li, X. Chang, J. Gong, Adv. Mater., 2018, 30, 1705538. [60] L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang, Y. Wang, Adv. Funct. Mater., 2017, 27, 1701008. [61] L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed., 2016, 55, 5277-5281. [62] X. Xiong, Z. Cai, D. Zhou, G. Zhang, Q. Zhang, Y. Jia, X. Duan, Q. Xie, S. Lai, T. Xie, Y. Li, X. Sun, X. Duan, Sci. China Mater., 2018, 61, 939-947. [63] Y. Wang, M. Qiao, Y. Li, S. Wang, Small, 2018, 14, 1800136. [64] J. S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater., 2018, 8, 1702774. [65] W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, S. Jin, S. H. Yang, Energy Environ. Sci., 2015, 8, 1404-1427. [66] F. Lu, M. Zhou, Y. Zhou, X. Zeng, Small, 2017, 13, 1701931. [67] P. Liao, J. A. Keith, E. A. Carter, J. Am. Chem. Soc., 2012, 134, 13296-13309. [68] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. GarcãA-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, Science, 2016, 352, 333-337. [69] O. Diaz-Morales, I. Ledezma-Yanez, M. T. M. Koper, F. Calle-Vallejo, ACS Catal., 2015, 5, 5380-5387. [70] D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Noerskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc., 2015, 137, 1305-1313. [71] H. Xu, B. Wang, C. Shan, P. Xi, W. Liu, Y. Tang, ACS Appl. Mater. Interfaces, 2018, 10, 6336-6345. [72] J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem., 2009, 1, 37-46. [73] B. Hammer, J. K. Nørskov, Adv. Catal., 2000, 45, 71-129. [74] K. Liang, Y. Yan, L. Guo, K. Marcus, Z. Li, L. Zhou, Y. Li, R. Ye, N. Orlovskaya, Y. H. Sohn, ACS Energy Lett., 2017, 2, 1315-1320. [75] C. Xiao, X. Lu, C. Zhao, Chem. Commun., 2014, 50, 10122-10125. [76] C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun, Adv. Mater., 2017, 29, 1602441. [77] H. F. Wang, C. Tang, B. Q. Li, Q. Zhang, Inorg. Chem. Front., 2018, 5, 521-534. [78] X. Long, S. Xiao, Z. Wang, X. Zheng, S. Yang, Chem. Commun., 2015, 51, 1120-1123. [79] A. C. Thenuwara, N. H. Attanayake, Q. Yan, D. R. Strongin, J. Yu, J. P. Perdew, E. J. Elzinga, J. Phys. Chem. B, 2018, 122, 847-854. [80] L. J. Foruzin, Z. Rezvani, Y. H. Shishavan, B. Habibi, Int. J. Hydrogen Energy, 2018, 43, 150-160. [81] H. Liu, Y. Wang, X. Lu, Y. Hu, G. Zhu, R. Chen, L. Ma, H. Zhu, Z. Tie, J. Liu, Z. Jin, Nano Energy, 2017, 35, 350-357. [82] Q. Q. Chen, C. C. Hou, C. J. Wang, X. Yang, R. Shi, Y. Chen, Chem. Commun., 2018, 54, 6400-6403. [83] Y. Yang, L. Dang, M. J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R. J. Hamers, S. Jin, Adv. Energy Mater., 2018, 8, 1703189. [84] L. Qian, Z. Lu, T. Xu, X. Wu, Y. Tian, Y. Li, Z. Huo, X. Sun, X. Duan, Adv. Energy Mater., 2015, 5, 1500245. [85] Q. Yang, T. Li, Z. Lu, X. Sun, J. Liu, Nanoscale, 2014, 6, 11789-11794. [86] T. Wang, W. Xu, H. Wang, Electrochim. Acta, 2017, 257, 118-127. [87] P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, X. Sun, Adv. Energy Mater., 2018, 8, 1703341. [88] K. N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, Small, 2018, 14, 1703257. [89] Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun, X. Duan, Chem. Commun., 2016, 52, 908-911. [90] S. Dey, B. Mondal, A. Dey, Phys. Chem. Chem. Phys., 2014, 16, 12221-12227. [91] Z. Xiao, Y. Wang, Y. C. Huang, Z. Wei, C. L. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Energy Environ. Sci., 2017, 10, 2563-2569. [92] A. Grimaud, W. T. Hong, Y. Shao-Horn, J. M. Tarascon, Nat. Mater., 2016, 15, 121-126. [93] B. Q. Li, S. Y. Zhang, C. Tang, X. Cui, Q. Zhang, Small, 2017, 13, 1700610. [94] J. Hao, W. Yang, Z. Peng, C. Zhang, Z. Huang, W. Shi, ACS Catal., 2017, 7, 4214-4220. [95] B. Ananthoju, J. Mohapatra, M. K. Jangid, D. Bahadur, N. V. Medhekar, M. Aslam, Sci. Rep., 2016, 6, 35369. [96] H. F. Wang, C. Tang, B. Wang, B. Q. Li, Q. Zhang, Adv. Mater., 2017, 29, 1702327. [97] L. Qian, W. Chen, M. Liu, Q. Jia, D. Xiao, ChemElectroChem, 2016, 3, 950-958. [98] L. M. Cao, J. W. Wang, D. C. Zhong, T. B. Lu, J. Mater. Chem. A, 2018, 6, 3224-3230. [99] Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, Adv. Funct. Mater., 2018, 28, 1703363. [100] L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, J. Am. Chem. Soc., 2015, 137, 2622-2627. [101] J. Chen, Y. Han, X. Kong, X. Deng, H. J. Park, Y. Guo, S. Jin, Z. Qi, Z. Lee, Z. Qiao, R. S. Ruoff, H. Ji, Angew. Chem. Int. Ed., 2016, 55, 13822-13827. [102] Z. Cai, Y. Bi, E. Hu, W. Liu, N. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X. Q. Yang, H. Wang, X. Sun, Adv. Energy Mater., 2018, 8, 1701694. [103] Y. Sun, S. Gao, F. Lei, Y. Xie, Chem. Soc. Rev., 2015, 44, 623-636. [104] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater., 2017, 29, 1606459. [105] M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie, J. Am. Chem. Soc., 2013, 135, 10411-10417. [106] S. Polarz, J. Strunk, V. Ischenko, M. W. E. van den Berg, O. Hinrichsen, M. Muhler, M. Driess, Angew. Chem. Int. Ed., 2006, 45, 2965-2969. [107] Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Angew. Chem. Int. Ed., 2017, 56, 5867-5871. [108] S. Jin, K. J. May, H. A. Gasteiger, J. B. Goodenough, S. H. Yang, Science, 2011, 334, 1383-1385. [109] T. Ling, D. Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X. W. Du, Z. Hu, M. Jaroniec, S. Z. Qiao, Nat. Commun., 2016, 7, 12876. [110] Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao, Y. Lin, W. Chu, Z. Peng, C. Wu, Y. Xie, Adv. Mater., 2015, 27, 5989-5994. [111] Y. Tong, P. Chen, M. Zhang, T. Zhou, L. Zhang, W. Chu, C. Wu, Y. Xie, ACS Catal., 2017, 8, 1-7. [112] G. Huang, Z. Xiao, R. Chen, S. Wang, ACS Sustain. Chem. Eng., 2018, 6, 15954-15969. [113] Z. Cai, Y. Bi, E. Hu, W. Liu, N. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X. Q. Yang, H. Wang, X. Sun, Adv. Energy Mater., 2018, 8, 1701694. [114] M. Kuang, P. Han, L. Huang, N. Cao, L. Qian, G. Zheng, Adv. Funct. Mater., 2018, DOI:10.1002/adfm.201804886. [115] P. F. Liu, S. Yang, B. Zhang, H. G. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 34474-34481. [116] T. Chinnusamy, V. Rodionov, F. E. Kühn, O. Reiser, Nat. Chem., 2011, 3, 79-84. [117] Q. Xie, Z. Cai, P. Li, D. Zhou, Y. Bi, X. Xiong, E. Hu, Y. Li, Y. Kuang, X. Sun, Nano Res., 2018, 11, 4524-4534. [118] R. Liu, Y. Wang, D. Liu, Y. Zou, S. Wang, Adv. Mater., 2017, 29, 1701546. [119] P. Zhou, Y. Wang, C. Xie, C. Chen, H. Liu, R. Chen, J. Huo, S. Wang, Chem. Commun., 2017, 53, 11778-11781. [120] R. Gao, D. Yan, Nano Res., 2018, 11, 1883-1894. [121] L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Y. Chen, Adv. Mater., 2017, 29, 1701410. [122] C. Hu, L. Zhang, Z. J. Zhao, J. Luo, J. Shi, Z. Huang, J. Gong, Adv. Mater., 2017, 29, 1701820. [123] J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui, B. Tang, J. Mater. Chem. A, 2018, 6, 16121-16129. [124] J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang, Adv. Energy Mater., 2015, 5, 1401880. [125] L. Xu, Z. Wang, X. Chen, Z. Qu, F. Li, W. Yang, Electrochim. Acta, 2018, 260, 898-904. [126] K. Yan, T. Lafleur, J. Chai, C. Jarvis, Electrochem. Commun., 2016, 62, 24-28. [127] Q. Kang, L. Vernisse, R. C. Remsing, A. C. Thenuwara, S. L. Shumlas, I. G. McKendry, M. L. Klein, E. Borguet, M. J. Zdilla, D. R. Strongin, J. Am. Chem. Soc., 2017, 139, 1863-1870. [128] X. Li, X. Hao, Z. Wang, A. Abudula, G. Guan, J. Power Sources, 2017, 347, 193-200. [129] Y. Xu, Y. Hao, G. Zhang, Z. Lu, S. Han, Y. Li, X. Sun, RSC Adv., 2015, 5, 55131-55135. [130] L. Z. Li, F. Han, C. Li, X. Jiao, D. Chen, Chem. Asian J., 2018, 13, 1129-2237. [131] M. Luo, Z. Cai, C. Wang, Y. Bi, L. Qian, Y. Hao, L. Li, Y. Kuang, Y. Li, X. Lei, Z. Huo, W. Liu, H. Wang, X. Sun, X. Duan, Nano Res., 2017, 10, 1732-1739. [132] L. Su, H. Du, C. Tang, K. Nan, J. Wu, C. M. Li, J. Colloid Interfaces Sci., 2018, 528, 36-44. [133] N. Han, F. Zhao, Y. Li, J. Mater. Chem. A, 2015, 3, 16348-16353. [134] K. Nejati, A. R. Akbari, S. Davari, K. Asadpour-Zeynali, Z. Rezvani, New J. Chem., 2018, 42, 2889-2895. [135] B. M. Hunter, W. Hieringer, J. R. Winkler, H. B. Gray, A. M. Müller, Energy Environ. Sci., 2016, 9, 1734-1743. [136] L. Dang, H. Liang, J. Zhuo, B. K. Lamb, H. Sheng, Y. Yang, S. Jin, Chem. Mater., 2018, 30, 4321-4330. [137] Y. Wang, K. Jiang, W. Wei, W. B. Cai, G. Zheng, H. Zhang, J. Wang, X. Sun, T. Zhou, Z. Yang, Adv. Sci., 2015, 2, 1500003. [138] M. Flytzani-Stephanopoulos, Acc. Chem. Res., 2014, 47, 783-792. [139] P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science, 2016, 352, 797-800. [140] S. Anantharaj, K. Karthick, M. Venkatesh, T. V. S. V. Simha, A. S. Salunke, L. Ma, H. Liang, S. Kundu, Nano Energy, 2017, 39, 30-43. [141] M. Taei, E. Havakeshian, F. Hasheminasab, RSC Adv., 2017, 7, 47049-47055. [142] W. Zhu, L. Liu, Z. Yue, W. Zhang, X. Yue, J. Wang, S. Yu, L. Wang, J. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 19807-19814. [143] J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, B. Zhang, J. Am. Chem. Soc., 2018, 140, 3876-3879. |
[1] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[2] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[3] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[4] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[5] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[6] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[7] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[8] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[9] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
[12] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[13] | Shuaiqi Meng, Zhongyu Li, Yu Ji, Anna Joelle Ruff, Luo Liu, Mehdi D. Davari, Ulrich Schwaneberg. Introduction of aromatic amino acids in electron transfer pathways yielded improved catalytic performance of cytochrome P450s [J]. Chinese Journal of Catalysis, 2023, 49(6): 81-90. |
[14] | Jiao Wang, Fangfang Zhu, Biyi Chen, Shuang Deng, Bochen Hu, Hong Liu, Meng Wu, Jinhui Hao, Longhua Li, Weidong Shi. B atom dopant-manipulate electronic structure of CuIn nanoalloy delivering wide potential activity over electrochemical CO2RR [J]. Chinese Journal of Catalysis, 2023, 49(6): 132-140. |
[15] | Cheng-Feng Du, Erhai Hu, Hong Yu, Qingyu Yan. Strategies for local electronic structure engineering of two-dimensional electrocatalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||