Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (8): 1187-1197.DOI: 10.1016/S1872-2067(19)63377-2
• Articles • Previous Articles Next Articles
Wanyue Zhao, Tong Ding, Yating Wang, Moqing Wu, Wenfeng Jin, Ye Tian, Xingang Li
Received:
2019-03-12
Revised:
2019-04-11
Online:
2019-08-18
Published:
2019-06-21
Supported by:
Wanyue Zhao, Tong Ding, Yating Wang, Moqing Wu, Wenfeng Jin, Ye Tian, Xingang Li. Decorating Ag/AgCl on UiO-66-NH2: Synergy between Ag plasmons and heterostructure for the realization of efficient visible light photocatalysis[J]. Chinese Journal of Catalysis, 2019, 40(8): 1187-1197.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63377-2
[1] A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278. [2] X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev., 2010, 110, 6503-6570. [3] X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev., 2014, 43, 473-486. [4] K. Singh, S. Arora, Crit. Rev. Environ. Sci. Technol., 2011, 41, 807-878. [5] M. A. Rauf, S. S. Ashraf, Chem. Eng. J., 2009, 151, 10-18. [6] S. Chowdhury, R. Balasubramanian, Appl. Catal. B, 2014, 160-161, 307-324. [7] C. R. Holkar, A. J. Jadhav, D. V Pinjari, N. M. Mahamuni, A. B. Pandit, J. Environ. Manage., 2016, 182, 351-366. [8] M. Mon, R. Bruno, J. Ferrando-Soria, D. Armentano, E. Pardo, J. Mater. Chem. A, 2018, 6, 4912-4947. [9] A. R. Khataee, M. B. Kasiri, J. Mol. Catal. A, 2010, 328, 8-26. [10] J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, J. Gong, Chem, 2017, 2, 877-892. [11] Y. Wang, J. Cai, M. Wu, H. Zhang, M. Meng, Y. Tian, T. Ding, J. Gong, Z. Jiang, X. Li, ACS Appl. Mater. Interfaces, 2016, 8, 23006-23014. [12] M. Wu, T. Ding, J. Cai, Y. Wang, H. Xian, H. Zhang, Y. Tian, T. Zhang, X. Li, ACS Sustain. Chem. Eng., 2018, 6, 8167-8177. [13] S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., Science, 2002, 297, 2243-2245. [14] Y. Zhou, Y. Li, X. Zhang, G. Jiang, W. He, F. Dong, Y. Zhang, Y. Sun, Appl. Catal. B, 2018, 239, 619-627. [15] W. Zhang, X. Liu, X. Dong, F. Dong, Y. Zhang, Chin. J. Catal. 2017, 38, 12, 2030-2038. [16] P. Chen, F. Dong, M. Ran, J. Li, Chin. J. Catal., 2018, 39, 619-629. [17] X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science, 2011, 331, 746-750. [18] S. Linic, P. Christopher, D. B. Ingram, Nat. Mater., 2011, 10, 911-921. [19] H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri, J. H. Ye, Adv. Mater., 2012, 24, 229-251. [20] Y. N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang, J. Wei, Z. Zhou, J. Mater. Chem. A, 2018, 6, 9716-9722. [21] L. Shen, M. Luo, L. Huang, P. Feng, L. Wu, Inorg. Chem., 2015, 54, 1191-1193. [22] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chem. Commun., 2012, 48, 11275-11288. [23] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Nat. Mater., 2010, 9, 172-178. [24] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450-1459. [25] J. Yao, H. Wang, Chem. Soc. Rev., 2014, 43, 4470-4493. [26] F. X. Li Xamena, A. Corma, H. Garcia, J. Phys. Chem. C, 2007, 111, 80-85. [27] C. G. Silva, I. Luz, F. X. Li Xamena, A. Corma, H. García, Chem.-Eur. J., 2010, 16, 11133-11138. [28] H. Chen, K. Shen, J. Chen, X. Chen, Y. Li, J. Mater. Chem. A, 2017, 5, 9937-9945. [29] L. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Adv. Mater., 2018, 30, 1703663. [30] D. Feng, W. C. Chung, Z. Wei, Z. Y. Gu, H. L. Jiang, Y. P. Chen, D. J. Darensbourg, H. C. Zhou, J. Am. Chem. Soc., 2013, 135, 17105-17110. [31] J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi, J. Gu, J. Mater. Chem. A, 2015, 3, 7445-7452. [32] J. Gascon, M. D. Hernández-Alonso, A. R. Almeida, G. P. M. van Klink, F. Kapteijn, G. Mul, ChemSusChem, 2008, 1, 981-983. [33] J. Qiu, X. Zhang, Y. Feng, X. Zhang, H. Wang, J. Yao, Appl. Catal. B, 2018, 231, 317-342. [34] Y. Tang, Z. Jiang, G. Xing, A. Li, P. D. Kanhere, Y. Zhang, T. C. Sum, S. Li, X. Chen, Z. Dong, Z. Chen, Adv. Funct. Mater., 2013, 23, 2932-2940. [35] W. J. Ong, L. K. Putri, L. L. Tan, S. P. Chai, S. T. Yong, Appl. Catal. B, 2016, 180, 530-543. [36] Z. F. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc., 2014, 136, 458-465. [37] Z. F. Jiang, W. Wei, D. J. Mao, C. Chen, Y. F. Shi, X. M. Lv, J. M. Xie, Nanoscale, 2015, 7, 784-797. [38] H. Li, Y. Sun, B. Cai, S. Gan, D. Han, L. Niu, T. Wu, Appl. Catal. B, 2015, 170-171, 206-214. [39] S. F. Yang, C. G. Niu, D. W. Huang, H. Zhang, C. Liang, G. M. Zeng, Environ. Sci.:Nano, 2017, 4, 585-595. [40] J. F. Guo, B. Ma, A. Yin, K. Fan, W. L. Dai, J. Hazard. Mater., 2012, 211-212, 77-82. [41] H. Fang, X. Cao, J. Yu, X. Lv, N. Yang, T. Wang, W. Jiang, J. Mater. Sci., 2018, 54, 286-301. [42] S. Gao, T. Feng, C. Feng, N. Shang, C. Wang, J. Colloid Interface Sci., 2016, 466, 284-290. [43] G. Fan, X. Zheng, J. Luo, H. Peng, H. Lin, M. Bao, L. Hong, J. Zhou, Chem. Eng. J., 2018, 351, 782-790. [44] K. Na, K. M. Choi, O. M. Yaghi, G. A. Somorjai, Nano Lett., 2014, 14, 5979-5983. [45] Z. Gu, L. Chen, B. Duan, Q. Luo, J. Liu, C. Duan, Chem. Commun., 2016, 52, 116-119. [46] R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, Y. Shen, Y. Yuan, Adv. Mater. Interfaces, 2015, 2, 1500037. [47] J. D. Xiao, Q. C. Shang, Y. J. Xiong, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed., 2016, 55, 9389-9393. [48] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, J. Mater. Chem. A, 2013, 1, 11473-11482. [49] W. Gan, X. Fu, J. Zhang, Mater. Sci. Eng. B, 2018, 229, 44-52. [50] Y. Bao, K. Chen, Nano-Micro Lett., 2016, 8, 182-192. [51] D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Nanoscale, 2012, 4, 5431-5439. [52] W. J. Jo, J. W. Jang, K. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. S. Parmar, J. S. Lee, Angew. Chem. Int. Ed., 2012, 51, 3147-3151. [53] Y. P. Yuan, L. S. Yin, S. W. Cao, G. S. Xu, C. H. Li, C. Xue, Appl. Catal. B, 2015, 168-169, 572-576. [54] Y. Su, Z. Zhang, H. Liu, Y. Wang, Appl. Catal. B, 2017, 200, 448-457. [55] E. Flage Larsen, A. Røyset, J. H. Cavka, K. Thorshaug, J. Phys. Chem. C, 2013, 117, 20610-20616. [56] H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B, 2013, 129, 182-193. [57] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, J. Mater. Chem. A, 2013, 1, 5766-5774. [58] Y. Wang, J. Cai, M. Wu, J. Chen, W. Zhao, Y. Tian, T. Ding, J. Zhang, Z. Jiang, X. Li, Appl. Catal. B, 2018, 239, 398-407. [59] Y. Gao, S. Li, Y. Li, L. Yao, H. Zhang, Appl. Catal. B, 2017, 202, 165-174. [60] J. Chen, T. Ding, J. Cai, Y. Wang, M. Wu, H. Zhang, W. Zhao, Y. Tian, X. Wang, X. Li, Appl. Surf. Sci., 2018, 453, 101-109. [61] J. W. Ha, T. P. A. Ruberu, R. Han, B. Dong, J. Vela, N. Fang, J. Am. Chem. Soc., 2014, 136, 1398-1408. [62] J. Hou, C. Yang, Z. Wang, Q. Ji, Y. Li, G. Huang, S. Jiao, H. Zhu, Appl. Catal. B, 2013, 142-143, 579-589. |
[1] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[2] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
[3] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[4] | Yang Lei, Jian-Feng Huang, Xin-Ao Li, Chu-Ying Lv, Chao-Ping Hou, Jun-Min Liu. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(8): 2249-2258. |
[5] | Aixia Wang, Linhe Zhang, Xuli Li, Yangqin Gao, Ning Li, Guiwu Lu, Lei Ge. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance [J]. Chinese Journal of Catalysis, 2022, 43(5): 1295-1305. |
[6] | Jie He, Xuandong Wang, Shangbin Jin, Zhao-Qing Liu, Mingshan Zhu. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity [J]. Chinese Journal of Catalysis, 2022, 43(5): 1306-1315. |
[7] | Gen Huang, Yingying Li, Ru Chen, Zhaohui Xiao, Shiqian Du, Yucheng Huang, Chao Xie, Chungli Dong, Haibo Yi, Shuangyin Wang. Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting [J]. Chinese Journal of Catalysis, 2022, 43(4): 1101-1110. |
[8] | Lulu An, Shaofeng Deng, Xuyun Guo, Xupo Liu, Tonghui Zhao, Ke Chen, Ye Zhu, Yuxi Fu, Xu Zhao, Deli Wang. Enhancing hydrogen electrocatalytic oxidation on Ni3N/MoO2 in-plane heterostructures in alkaline solution [J]. Chinese Journal of Catalysis, 2022, 43(12): 3154-3160. |
[9] | Zizhan Liang, Rongchen Shen, Peng Zhang, Youji Li, Neng Li, Xin Li. All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2581-2591. |
[10] | Yuan Huang, Jian-Jun Wang, Yang Zou, Li-Wen Jiang, Xiao-Long Liu, Wen-Jie Jiang, Hong Liu, Jin-Song Hu. Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation [J]. Chinese Journal of Catalysis, 2021, 42(8): 1395-1403. |
[11] | Xueyou Gao, Deqian Zeng, Jingren Yang, Wee-Jun Ong, Toyohisa Fujita, Xianglong He, Jieqian Liu, Yuezhou Wei. Ultrathin Ni(OH)2 nanosheets decorated with Zn0.5Cd0.5S nanoparticles as 2D/0D heterojunctions for highly enhanced visible light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2021, 42(7): 1137-1146. |
[12] | Khakemin Khan, Lifen Xu, Ming Shi, Jiangshan Qu, Xiaoping Tao, Zhaochi Feng, Can Li, Rengui Li. Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst [J]. Chinese Journal of Catalysis, 2021, 42(6): 1004-1012. |
[13] | Feiyue Ge, Shuquan Huang, Jia Yan, Liquan Jing, Feng Chen, Meng Xie, Yuanguo Xu, Hui Xu, Huaming Li. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity [J]. Chinese Journal of Catalysis, 2021, 42(3): 450-459. |
[14] | Diankun Sun, Jian-Wen Shi, Dandan Ma, Yajun Zou, Guotai Sun, Siman Mao, Lvwei Sun, Yonghong Cheng. CdS/ZnS/ZnO ternary heterostructure nanofibers fabricated by electrospinning for excellent photocatalytic hydrogen evolution without co-catalyst [J]. Chinese Journal of Catalysis, 2020, 41(9): 1421-1429. |
[15] | Ruimin Chen, Hong Wang, Huizhong Wu, Jianping Sheng, Jieyuan Li, Wen Cui, Fan Dong. SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activity, and reaction mechanism [J]. Chinese Journal of Catalysis, 2020, 41(4): 710-718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||