Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (8): 1222-1230.DOI: 10.1016/S1872-2067(19)63375-9
• Articles • Previous Articles
Yapeng Donga, Rong Niea, Jixian Wanga, Xiaogang Yua, Pengcheng Tua, Jiazang Chenb, Huanwang Jinga,b
Received:
2019-02-17
Revised:
2019-04-08
Online:
2019-08-18
Published:
2019-06-21
Supported by:
Yapeng Dong, Rong Nie, Jixian Wang, Xiaogang Yu, Pengcheng Tu, Jiazang Chen, Huanwang Jing. Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode[J]. Chinese Journal of Catalysis, 2019, 40(8): 1222-1230.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63375-9
[1] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473. [2] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38. [3] C. Xiang, A. Z. Weber, S. Ardo, A. Berger, Y. Chen, R. Coridan, K. T. Fountaine, S. Haussener, S. Hu, R. Liu, N. S. Lewis, M. A. Modes-tino, M. M. Shaner, M. R. Singh, J. C. Stevens, K. Sun, K. Walczak, Angew. Chem. Int. Ed., 2016, 55, 12974-12988. [4] R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, X. Li, Chin. J. Catal., 2019, 40, 240-288. [5] P. Yang, H. Zhuzhang, R. Wang, W. Lin, X. Wang, Angew. Chem. Int. Ed., 2019, 58, 1134-1137. [6] S. Liu, J. Xia, J. Yu, ACS Appl. Mater. Interfaces, 2015, 7, 8166-8175. [7] Y. Ren, D. Zeng, W.-J. Ong, Chin. J. Catal., 2019, 40, 289-319. [8] C. Yan, L. Lin, G. Wang, X. Bao, Chin. J. Catal., 2019, 40, 23-37. [9] Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K. L. Materna, W. Liu, V. S. Batista, G. W. Brudvig, H. Wang, J. Am. Chem. Soc., 2016, 138, 8076-8079. [10] S. Yan, S. Ouyang, J. Gao, M. Yang, J. Feng, X. Fan, L. Wan, Z. Li, J. H. Ye, Y. Zhou, Z. Zou, Angew. Chem. Int. Ed., 2010, 49, 6400-6404. [11] X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, Angew. Chem. Int. Ed., 2016, 55, 8840-8845. [12] S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature, 2016, 529, 68-71. [13] X. Huang, Q. Shen, J. Liu, N. Yang, G. Zhao, Energy Environ. Sci., 2016, 9, 3161-3171. [14] S. Wang, Y. Hou, X. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 4327-4335. [15] R. D. Richardson, E. J. Holland, B. K. Carpenter, Nat. Chem., 2011, 3, 301-303. [16] J. L. White, M. F. Baruch, J. E. Pander Ⅲ, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev., 2015, 115, 12888-12935. [17] F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Nat. Chem., 2014, 6, 320-324. [18] S. Zhang, P. Kang, S. Ubnoske, M. K. Brennaman, N. Song, R. L. House, J. T. Glass, T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 7845-7848. [19] ?. Nea?u, J. A. Maciá-Agulló, P. Concepción, H. Garcia, J. Am. Chem. Soc., 2014, 136, 15969-15976. [20] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed., 2013, 52, 7372-7408. [21] R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Angew. Chem. Int. Ed., 2015, 54, 2406-2409. [22] C. Ding, A. Li, S.-M. Lu, H. Zhang, C. Li, ACS Catal., 2016, 6, 6438-6443. [23] W. Kim, E. Edri, H. Frei, Acc. Chem. Res., 2016, 49, 1634-1645. [24] Y. Zhang, B. Han, Y. Xu, D. Zhao, Y. Jia, R. Nie, Z. Zhu, F. Chen, J. Wang, H. Jing, ChemSusChem, 2017, 10, 1742-1748. [25] Y. Jia, Y. Xu, R. Nie, F. Chen, Z. Zhu, J. Wang, H. Jing, J. Mater. Chem. A, 2017, 5, 5495-5501. [26] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev., 2014, 114, 9987-10043. [27] L. Wang, J. Ge, A. Wang, M. Deng, X. Wang, S. Bai, R. Li, J. Jiang, Q. Zhang, Y. Luo, Y. Xiong, Angew. Chem. Int. Ed., 2014, 53, 5107-5111. [28] X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, Angew. Chem. Int. Ed., 2016, 55, 8840-8845. [29] C. G. Read, Y. Park, K. S. Choi, J. Phys. Chem. Lett., 2012, 3, 1872-1876. [30] Y. J. Jang, J.-W. Jang, J. Lee, J. H. Kim, H. Kumagai, J. Lee, T. Minegishi, J. Kubota, K. Domen, J. S. Lee, Energy Environ. Sci., 2015, 8, 3597-3604. [31] T. Masuda, Y. Sun, H. Fukumitsu, H. Uehara, S. Takakusagi, W.-J. Chun, T. Kondo, K. Asakura, K. Uosaki, J. Phys. Chem. C, 2016, 120, 16200-16210. [32] E. E. Barton, D. M. Rampulla, A. B. Bocarsly, J. Am. Chem. Soc., 2008, 130, 6342-6344. [33] T. E. Rosser, C. D. Windle, E. Reisner, Angew. Chem. Int. Ed, 2016, 55, 7388-7392. [34] F. Gou, X. Jiang, R. Fang, H. Jing, Z. Zhu, ACS Appl. Mater. Inter-faces, 2014, 6, 6697-6703. [35] R. D. Richardson, E. J. Holland, B. K. Carpenter, Nat. Chem., 2011, 3, 301-303. [36] Y. Xu, Y. Jia, Y. Zhang, R. Nie, Z. Zhu, J. Wang, H. Jing, Appl. Catal. B, 2017, 205, 254-261. [37] L. Wang, Y. Jia, R. Nie, Y. Zhang, F. Chen, Z. Zhu, J. Wang, H. Jing, J. Catal., 2017, 349, 1-7. [38] L. L. Li, E. W. G. Diau, Chem. Soc. Rev., 2013, 42, 291-304. [39] F. Gou, X. Jiang, B. Li, H. Jing, Z. Zhu, ACS Appl. Mater. Interfaces, 2013, 5, 12631-12637. [40] X. Zhang, Y. Jia, D. Zhao, F. Gou, H. Gao, C. Xu, F. Chen, Z. Zhu, H. Jing, ChemistrySelcet, 2017, 2, 4084-4091. [41] H. Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc., 2015, 137, 13440-13443. [42] I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, J. T. Hupp, ACS Catal., 2015, 5, 6302-6309. [43] D. Wang, J. T. Groves, Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 15579-15584. [44] M. L. Rigsby, D. J. Wasylenko, M. L. Pegis, J. M. Mayer, J. Am. Chem. Soc., 2015, 137, 4296-4299. [45] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazee-ruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Sci-ence, 2011, 334, 629-634. [46] C. Costentin, M. Robert, J. M. Saveant, Acc. Chem. Res., 2015, 48, 2996-3006. [47] Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K. L. Materna, W. Liu, V. S. Batista, G. W. Brudvig, H. Wang, J. Am. Chem. Soc., 2016, 138, 8076-8079. [48] N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi, P. Yang, J. Am. Chem. Soc., 2015, 137, 14129-14135. [49] S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science, 2015, 349, 1208-1213. [50] H. Shahroosvand, S. Zakavi, A. Sousaraei, E. Mohajerani, M. Mahmoudi, Dalton Trans., 2015, 44, 8364-8368. [51] X. M. Hu, M. H. Rønne, S. U. Pedersen, T. Skrydstrup, K. Daas-bjerg, Angew. Chem. Int. Ed., 2017, 56, 6468-6472. [52] P. Lang, M. Pfrunder, G. Quach, B. Braun-Cula, E. G. Moore, M. Schwalbe, Chem. Eur. J., 2019, 25, 4509-4519. [53] L. Wang, S. Duan, P. Jin, H. She, J. Huang, Z. Lei, T. Zhang, Q. Wang, Appl. Catal. B, 2018, 239, 599-608. [54] D.-I. Won, J.-S. Lee, Q. Ba, Y.-J. Cho, H.-Y. Cheong, S. Choi, C. H. Kim, H.-J. Son, C. Pac, S. O. Kang, ACS Catal., 2018, 8, 1018-1030. [55] C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, Science, 2012, 338, 90-94. |
[1] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[2] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[3] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[4] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[5] | Yan Wei, Ruizhi Duan, Qiaolan Zhang, Youzhi Cao, Jinyuan Wang, Bing Wang, Wenrui Wan, Chunyan Liu, Jiazang Chen, Hong Gao, Huanwang Jing. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 243-253. |
[6] | Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 55(12): 137-158. |
[7] | Shunta Nishioka, Kengo Shibata, Yugo Miseki, Kazuhiro Sayama, Kazuhiko Maeda. Visible-light-driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts [J]. Chinese Journal of Catalysis, 2022, 43(9): 2316-2320. |
[8] | Wanjun Sun, Jiayu Zhu, Meiyu Zhang, Xiangyu Meng, Mengxue Chen, Yu Feng, Xinlong Chen, Yong Ding. Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation [J]. Chinese Journal of Catalysis, 2022, 43(9): 2273-2300. |
[9] | Fenglei Lyu, Wei Hua, Huirong Wu, Hao Sun, Zhao Deng, Yang Peng. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1417-1432. |
[10] | Haijiao Lu, Xianlong Li, Sabiha Akter Monny, Zhiliang Wang, Lianzhou Wang. Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors [J]. Chinese Journal of Catalysis, 2022, 43(5): 1204-1215. |
[11] | Linlin Wang, Xin Li, Leiduan Hao, Song Hong, Alex W. Robertson, Zhenyu Sun. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene [J]. Chinese Journal of Catalysis, 2022, 43(4): 1049-1057. |
[12] | Yucong Miao, Mingfei Shao. Photoelectrocatalysis for high-value-added chemicals production [J]. Chinese Journal of Catalysis, 2022, 43(3): 595-610. |
[13] | Li Zhu, Yiyang Lin, Kang Liu, Emiliano Cortés, Hongmei Li, Junhua Hu, Akira Yamaguchi, Xiaoliang Liu, Masahiro Miyauchi, Junwei Fu, Min Liu. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products [J]. Chinese Journal of Catalysis, 2021, 42(9): 1500-1508. |
[14] | Qifa Chen, Haoyi Du, Mingtian Zhang. Buffer anion effects on water oxidation catalysis: The case of Cu(III) complex [J]. Chinese Journal of Catalysis, 2021, 42(8): 1338-1344. |
[15] | Huihui Hu, Lingzhen Zeng, Zhe Li, Tianbao Zhu, Cheng Wang. Incorporating porphyrin-Pt in light-harvesting metal-organic frameworks for enhanced visible light-driven hydrogen production [J]. Chinese Journal of Catalysis, 2021, 42(8): 1345-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||