Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (9): 1282-1297.DOI: 10.1016/S1872-2067(19)63361-9
• Reviews • Previous Articles Next Articles
Pengkun Weia, Xue Chena, Guizhu Wua, Jing Lia, Yang Yanga, Zeiwei Haoa, Xiao Zhangb, Jing Lic, Lu Liua
Received:
2018-12-27
Online:
2019-09-18
Published:
2019-07-06
Contact:
S1872-2067(19)63361-9
Supported by:
Pengkun Wei, Xue Chen, Guizhu Wu, Jing Li, Yang Yang, Zeiwei Hao, Xiao Zhang, Jing Li, Lu Liu. Recent advances in cobalt-, nickel-, and iron-based chalcogen compounds as counter electrodes in dye-sensitized solar cells[J]. Chinese Journal of Catalysis, 2019, 40(9): 1282-1297.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63361-9
[1] H. Yuan, J. Liu, H. S. Li, Y. F. Li, X. F. Liu, D. X. Shi, Q. Wu, Q. Z. Jiao, J. Mater. Chem. A, 2018, 6, 5603-5607. [2] M. Chen, L. L. Shao, Z. Y. Yuan, Q. S. Jing, K. J. Huang, Z. Y. Huang, X. H. Zhao, G. D. Zou, ACS Appl. Mater. Interfaces, 2017, 9, 17949-17960. [3] P. Kulkarni, S. K. Nataraj, R. G. Balakrishna, D. H. Nagaraju, M. V. Reddy, J. Mater. Chem. A, 2017, 5, 22040-22094. [4] S. L. Jian, Y. J. Huang, M. H. Yeh, K. C. Ho, J. Mater. Chem. A, 2018, 6, 5107-5118. [5] I. P. Liu, H. Teng, Y. L. Lee, J. Mater. Chem. A, 2017, 5, 23146-23157. [6] J. Azadmanjiri, V. K. Srivastava, P. Kumar, M. Nikzad, J. Wang, A. Yu, J. Mater. Chem. A, 2018, 6, 702-734. [7] M. Chen, L. L. Shao, Z. M. Gao, T. Z. Ren, Z. Y. Yuan, J. Power Sources, 2015, 286, 82-90. [8] B. O'Regan, M. Grätzel, Nature, 1991, 353, 737-740. [9] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazee-ruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Sci-ence, 2011, 334, 629-634. [10] M. Freitag, J. Teuscher, Y. Saygili, X. Y. Zhang, F. Giordano, P. Liska, J. L. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, A. Hag-feldt, Nat. Photonics, 2017, 11, 372-378. [11] X. Zhang, J. W. Bai, M. M. Zhen, L. Liu, RSC Adv., 2016, 6, 89614-89620. [12] Y. H. Wu, B. Zhou, C. Yang, S. C. Liao, W. H. Zhang, C. Li, Chem. Commun., 2016, 52, 11488-11491. [13] M. Chen, L. L. Shao, Chem. Eng. J., 2016, 304, 629-645. [14] M. Chen, L. L. Shao, X. Qian, T. Z. Ren, Z. Y. Yuan, J. Mater. Chem. C, 2014, 2, 10312-10321. [15] X. Zhang, Y. X. Yang, S. Q. Guo, F. Z. Hu, L. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 8457-8464. [16] X. Zhang, T. Z. Jing, S. Q. Guo, G. D. Gao, L. Liu, RSC Adv., 2014, 4, 50312-50317. [17] J. Balamurugan, S. G. Peera, M. Guo, T. T. Nguyen, N. H. Kim, J. H. Lee, J. Mater. Chem. A, 2017, 5, 17896-17908. [18] W. Yang, X. W. Xu, Y. L. Gao, Z. Li, C. Y. Li, W. P. Wang, Y. Chen, G. Q. Ning, L. Q. Zhang, F. Yang, S. L. Chen, A. J. Wang, J. Kong, Y. F. Li, Nanoscale, 2016, 8, 13059-13066. [19] M. Chen, L. L. Shao, X. Qian, L. Liu, T. Z. Ren, Z. Y. Yuan, Chem. Eng. J., 2014, 256, 23-31. [20] M. Chen, G. Zhao, L. L. Shao, Z. Y. Yuan, Q. S. Jing, K. J. Huang, Z. Y. Huang, X. H. Zhao, G. D. Zou, Chem. Mater., 2017, 29, 9680-9694. [21] M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakul-chote, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc., 2009, 131, 15976-15977. [22] Y. C. Wang, D. Y. Wang. Y. T. Jiang, H. A. Chen, C. C. Chen, K. C. Ho, H. L. Chou, C. W. Chen, Angew. Chem. Int. Ed., 2013, 52, 6694-6698. [23] Y. Y. Duan, Q. W. Tang, J. Liu, B. L. He, L. M. Yu, Angew. Chem. Int. Ed., 2014, 53, 14569-14574. [24] F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, J. Am. Chem. Soc., 2012, 134, 10953-10958. [25] X. Zhang, M. M. Zhen, J. W. Bai, S. W. Jin, L. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 17187-17193. [26] Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. J. Zhao, H. G. Yang, Nat. Commun., 2013, 4, 1583. [27] J. X. Yao, K. Zhang, W. Wang, X. Q. Zuo, Q. Yang, H. B. Tang, M. Z. Wu, G. Li, Nanoscale, 2018, 10, 7946-7956 [28] J. X. Yao, K. Zhang, W. Wang, X. Q. Zuo, Q. Yang, H. B. Tang, M. Z. Wu, G. Li, ACS Appl. Mater. Interfaces, 2018, 10, 19564-19572. [29] F. Du, X. Q. Zuo, Q. Yang, G. Li, Z. L. Ding, M. Z. Wu, Y. Q. Ma, K. R. Zhu, J. Mater. Chem. C, 2016, 4, 10323-10328. [30] X. Qian, H. M. Li, L. Shao, X. C. Jiang, L. X. Hou, ACS Appl. Mater. Interfaces, 2016, 8, 29486-29495. [31] Y. Q. Jiang, X. Qian, Y. D. Niu, L. Shao, C. L. Zhu, L. X. Hou, J. Power Sources, 2017, 369, 35-41. [32] F. Du, X. Q. Zuo, Q. Yang, B. Yang, G. Li, H. B. Tang, H. J. Zhang, M. Z. Wu, Y. Q. Ma, Sol. Energy Mater. Sol. Cells, 2016, 149, 9-14. [33] S. H. Chang, M. D. Lu, Y. L. Tung, H. Y. Tuan, ACS Nano, 2013, 7, 9443-9451. [34] S. A. Patil, D. V. Shinde, I. Lim, K. Cho, S. S. Bhande, R. S. Mane, N. K. Shrestha, J. K. Lee, T. H. Yoon, S. H. Han, J. Mater. Chem. A, 2015, 3, 7900-7909. [35] Z. Y. Zhang, S. P. Pang, H. X. Xu, Z. Z. Yang, X. Y. Zhang, Z. H. Liu, X. G. Wang, X. H. Zhou, S. M. Dong, X. Chen, L. Gu, G. L. Cui, RSC Adv., 2013, 3, 16528-16533. [36] Y. Y. Duan, Q. W. Tang, B. L. He, Z. Y. Zhao, L. Zhu, L. M. Yu, J. Power Sources, 2015, 284, 349-354. [37] X. T. Yuan, H. X. Ge, X. Wang, C. L. Dong, W. J. Dong, S. R. Muhammad, Z. W. Xu, J. X. Zhang, F. Q. Huang, ACS Energy Lett., 2017, 2, 1208-1213. [38] Y. Z. Zhang, Y. Wang, Y. L. Xie, T. Cheng, W. Y. Lai, H. Pang, W. Huang, Nanoscale, 2014, 6, 14354-14359. [39] H. L. Wang, N. Mao, J. Shi, Q. G. Wang, W. H. Yu, X. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 2882-2890. [40] X. D. Cui, Z. Q. Xie, Y. Wang, Nanoscale, 2016, 8, 11984-11992. [41] T. Liu, X. M. Mai, H. J. Chen, J. Ren, Z. T. Liu, Y. X. Li, L. Gao, N. Wang, J. X. Zhang, H. C. He, Z. H. Guo, Nanoscale, 2018, 10, 4194-4201. [42] H. Yuan, Q. Z. Jiao, J. Liu, X. F. Liu, H. Y. Yang, Y. Zhao, Q. Wu, D. X. Shi, H. S. Li, J. Power Sources, 2016, 336, 132-142. [43] J. H. Huo, J. H. Wu, M. Zheng, Y. G. Tu, Z. Lan, J. Power Sources, 2015, 293, 570-576. [44] J. H. Huo, J. H. Wu, M. Zheng, Y. G. Tu, Z. Lan, Electrochim. Acta, 2016, 187, 210-217. [45] E. B. Bi, H. Chen, X. D. Yang, W. Q. Peng, M. Grätzel, L. Y. Han, Ener-gy Environ. Sci., 2014, 7, 2637-2641. [46] X. H. Miao, K. Pan, G. F. Wang, Y. P. Liao, L. Wang, W. Zhou, B. J. Jiang, Q. J. Pan, G. H. Tian, Chem.-Eur. J., 2014, 20, 474-482. [47] Y. D. Niu, X. Qian, J. Zhang, W. M. Wu, H. Y. Liu, C. Xu, L. X. Hou, J. Mater. Chem. A, 2018, 6, 12056-12065. [48] V. Murugadoss, N. Wang, S. Tadakamalla, B. Wang, Z. H. Guo, S. Angaiah, J. Mater. Chem. A, 2017, 5, 14583-14594. [49] I. T. Chiu, C. T. Li, C. P. Lee, P. Y. Chen, Y. H. Tseng, R. Vittal, K. C. Ho, Nano Energy, 2016, 22, 594-606. [50] Y. B. Li, H. M. Zhang, Y. Wang, P. R. Liu, H. G. Yang, X. D. Yao, D. Wang, Z. Y. Tang, H. J. Zhao, Energy Environ. Sci., 2014, 7, 3720-3726. [51] M. K. Datta, K. Kadakia, O. I. Velikokhatnyi, P. H. Jampani, S. J. Chung, J. A. Poston, A. Manivannan, P. N. Kumta, J. Mater. Chem. A, 2013, 1, 4026-4037. [52] C. H. Cui, S. H. Yu, Acc. Chem. Res., 2013, 46, 1427-1437. [53] Z. J. Tan, P. R. Liu, H. M. Zhang, Y. Wang, M. Al-Mamun, H. G. Yang, D. Wang, Z. Y. Tang, H. J. Zhao, Chem. Commun., 2015, 51, 5695-5697. [54] S. Lu, Y. L. Wang, F. Li, G. C. Yang, H. Y. Yang, X. T. Zhang, Y. C. Liu, J. Phys. Chem. C, 2017, 121, 12524-12530. [55] Y.-J. Huang, C.-P. Lee, H.-W. Pang, C.-T. Li, M.-S. Fan, R. Vittal, K.-C. Ho, Mater. Today Energy, 2017, 6, 189-197. [56] C.-W. Kung, H.-W. Chen, C.-Y. Lin, K.-C. Huang, R. Vittal, K.-C. Ho, ACS Nano, 2012, 6, 7016-7025. [57] J. C. Tsai, M. H. Hon, I. C. Leu, RSC Adv., 2015, 5, 4328-4333. [58] H. Sun, L. Zhang, Z. S. Wang, J. Mater. Chem. A, 2014, 2, 16023-16029. [59] Z. J. Tan, P. R. Liu, H. M. Zhang, Y. Wang, M. Al-Mamun, H. G. Yang, D. Wang, Z. Y. Tang, H. J. Zhao, Chem. Commun., 2015, 51, 5695-5697. [60] X. Sun, J. Dou, F. Y. Xie, Y. F. Li, M. D. Wei, Chem. Commun., 2014, 50, 9869-9871. [61] X. W. Wang, B. Batter, Y. Xie, K. Pan, Y. P. Liao, C. M. Lv, M. X. Li, S. Y. Sui, H. G. Fu, J. Mater. Chem. A, 2015, 3, 15905-15912. [62] Y. B. Li, H. F. Wei, H. M. Zhang, P. R. Liu, Y. Wang, W. Q. Fang, H. G. Yang, Y. Li, H. J. Zhao, Chem. Commun., 2014, 50, 5569-5571. [63] J. L. Zheng, W. Zhou, Y. R. Ma, W. Cao, C. B. Wang, L. Guo, Chem. Commun., 2015, 51, 12863-12866. [64] Y. M. Xiao, G. Y. Han, H. H. Zhou, Y. P. Li, J. Y. Lin, Electrochim. Aata, 2015, 155, 103-109. [65] Z. Q. Wan, C. Y. Jia, Y. Wang, Nanoscale, 2015, 7, 12737-12742. [66] M. N. Lu, C. S. Dai, S. Y. Tai, T. W. Lin, J. Y. Lin, J. Power Sources, 2014, 270, 499-505. [67] M. X. Guo, F. L. Zhao, Y. G. Yao, S. M. Wang, S. H. Yin, Electrochim. Acta, 2016, 205, 15-19. [68] J. Kim, C. L. Jung, M. Kim, S. Kim, Y. Kang, H. S. Lee, J. Park, Y. Jun, D. Kim, Nanoscale, 2016, 8, 7761-7767. [69] A. Sarkar, A. K. Chakraborty, S. Bera, Sol. Energy Mater. Sol. Cells, 2018, 182, 314-320. [70] G. H. Guai, M. Y. Leiw, C. M. Ng, C. M. Li, Adv. Energy Mater., 2012, 2, 334-338. [71] J. Y. Lin, W. Y. Wang, Y. T. Lin, S. W. Chou, ACS Appl. Mater. Inter-faces, 2014, 6, 3357-3364. [72] H. M. Chuang, C. T. Li, M. H. Yeh, C. P. Lee, R. Vittal, K. C. Ho, J. Mater. Chem. A, 2014, 2, 5816-5824. [73] W. J. Ke, G. J. Fang, H. Tao, P. L. Qin, J. Wang, H. W. Lei, Q. Liu, X. Z. Zhao, ACS Appl. Mater. Interfaces, 2014, 6, 5525-5530. [74] Y. P. Liao, K. Pan, Q. J. Pan, G. F. Wang, W. Zhou, H. G. Fu, Na-noscale, 2015, 7, 1623-1626. [75] X. Zhang, H. J. Zhang, X. Y. Wang, X. M. Zhou, RSC Adv., 2018, 8, 28131-28138. [76] L. Wang, Y. T. Shi, H. Zhang, X. G. Bai, Y. X. Wang, T. L. Ma, J. Mater. Chem. A, 2014, 2, 15279-15283. [77] C. L. Zhang, L. B. Deng, P. X. Zhang, X. Z. Ren, Y. L. Li, T. S. He, Elec-trochim. Acta, 2017, 229, 229-238. [78] S. S. Huang, Q. Q. He, W. L. Chen, Q. Q. Qiao, J. T. Zai, X. F. Qian, Chem.-Eur. J., 2015, 21, 4085-4091. [79] W. J. Wang, X. Pan, W. Q. Liu, B. Zhang, H. W. Chen, X. Q. Fang, J. X. Yao, S. Y. Dai, Chem. Commun., 2014, 50, 2618-2620. [80] S. S. Huang, Q. Q. He, W. L. Chen, J. T. Zai, Q. Q. Qiao, X. F. Qian, Nano Energy, 2015, 15, 205-215 [81] F. Liu, J. Zhu, L. H. Hu, B. Zhang, J. X. Yao, Md. K. Nazeeruddin, M. Graetzel, S. Y. Dai, J. Mater. Chem. A, 2015, 3, 6315-6323. [82] L. Wang, Y. T. Shi, Y. X. Wang, H. Zhang, H. W. Zhou, Y. Wei, S. Y. Tao, T. L. Ma, Chem. Commun., 2014, 50, 1701-1703. [83] H. Harrendrakrishnakumar, R. Chulliyote, M. G. Joseph, J. Solid State Electrochem., 2017, 22, 1-9. [84] M. Awais, E. Gibson, J. G. Vos, D. P. Dowling, A. Hagfeldt, D. Dini, ChemElectroChem, 2014, 1, 384-391. [85] H. C. Sun, D. Qin, S. Q. Huang, X. Z. Guo, D. M. Li, Y. H. Luo, Q. B. Meng, Energy Environ. Sci., 2011, 4, 2630-2637. [86] W. S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee, J. H. Kim, Chem. Commun., 2012, 48, 9501-9503. [87] W. Zhao, T. Q. Lin, S. R. Sun, H. Bi, P. Chen, D. Y. Wan, F. Q. Huang, J. Mater. Chem. A, 2013, 1, 194-198. [88] Z. L. Ku, X. Li, G. H. Liu, H. Wang, Y. G. Rong, M. Xu, L. F. Liu, M. Hu, Y. Yang, H. W. Han, J. Mater. Chem. A, 2013, 1, 237-240. [89] Y. Li, Y. Chang, Y. Zhao, J. Wang, C. W. Wang, J. Alloys Compd., 2016, 679, 384-390. [90] C. Q. Feng, Z. T. Jin, M. R. Zhang, Z. S. Wang, Electrochim. Acta, 2018, 281, 237-245. [91] Y. Y. Duan, Q. W. Tang, B. L. He, R. Li, L. M. Yu, Nanoscale, 2014, 6, 12601-12608. [92] J. B. Jia, J. H. Wu, Y. G. Tu, J. H. Huo, M. Zheng, J. M. Lin, J. Alloys Compd, 2015, 640, 29-33. [93] H. Wu, Y. X. Wang, L. M. Zhang, Z. Y. Chen, C. Wang, S. H. Fan, J. Alloy. Compd., 2018, 745, 222-227. [94] C. T. Lee, J. D. Peng, C. T. Li, Y. L. Tsai, R. Vittal, K. C. Ho, Nano En-ergy, 2014, 10, 201-211. [95] F. Gong, X. Xu, Z. Q. Li, G. Zhou, Z. S. Wang, Chem Commun., 2013, 49, 1437-1439. [96] X. Zhang, J. W. Bai, B. Yang, G. Li, L. Liu, RSC Adv., 2016, 6, 58925-58932. [97] R. Singh, S. Kumar, R. K. Bedi, V. Saxena, D. K. Aswal, A. Mahajan, J. Phys. Chem. Solids, 2018, 123, 191-197. [98] Z. Q. Li, F. Gong, G. Zhou, Z.-S. Wang, J. Phys. Chem. C., 2013, 117, 6561-6566. [99] J. Dong, J. H. Wu, J. B. Jia, L. Q. Fan, J. M. Lin, J. Colloid. Interface Sci., 2017, 498, 217-222. [100] Q.-L. Liu, Y.-J. Dong, Y. Cao, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Electrochim. Acta, 2017, 250, 244-250. [101] Y. Hu, Z. Zheng, H. M. Jia, Y. W. Tang, L. Z. Zhang, J. Phys. Chem. C, 2008, 112, 13037-13042. [102] S. Shukla, N. H. Loc, P. P. Boix, T. M. Koh, R. R. Prabhakar, H. K. Mulmudi, J. Zhang, S. Chen, C. F. Ng, C. H. A. Huan, N. Mathews, T. Sritharan, Q. H. Xiong, ACS Nano, 2014, 8, 10597-10605. [103] J. Liu, Q. W. Tang, B. L. He, L. M. Yu, J. Power Sources, 2015, 275, 288-293. [104] M. Batmunkh, A. Shrestha, G. Gao, L. P. Yu, J. Zhao, M. J. Biggs, C. J. Shearer, J. G. Shapter, Sol. RRL., 2017, 1, 1700011. [105] D. Rickard, G. W. Luther Ⅲ, Chem. Rev, 2007, 107, 514-562. [106] H. X. Xu, C. J. Zhang, Z. W. Wang, S. P. Pang, X. H. Zhou, Z. Y. Zhang, G. L. Cui, J. Mater. Chem. A, 2014, 2, 4676-4681. [107] J. W. Xiao, L. Wan, S. H. Yang, F. Xiao, S. Wang, Nano Lett., 2014, 14, 831-838. [108] Z. W. Shi, H. Lu, Q. Liu, K. Deng, L. Y. Xu, R. J. Zou, J. Q. Hu, Y. Bando, D. Golberg, L. Li, Energy Technol., 2014, 2, 517-521. [109] X. Zhang, S. Q. Guo, M. M. Zhen, G. D. Gao, L. Liu, J. Electrochem. Soc., 2015, 162, H774-H779. [110] C. L. Zhang, L. B. Deng, P. X. Zhang, X. Z. Ren, Y. L. Li, T. S. He, Dal-ton Trans., 2017, 46, 4403-4411 [111] F. Du, Q. Yang, T. Z. Qin, G. Li, Sol. Energy, 2017, 146, 125-130. [112] Z. Y. Zhang, X. G. Wang, G. L. Cui, A. H. Zhang, X. H. Zhou, H. X. Xu, L. Gu, Nanoscale, 2014, 6, 3540-3544. [113] J. Y. Lin, S. W. Chou, Electrochem. Commun., 2013, 37, 11-14. [114] M. N. Lu, J. Y. Lin, T. C. Wei, J. Power Sources, 2016, 332, 281-289. [115] R. Krishnapriya, S. Praneetha, A. M. Rabel, M. A. Vadivel Muru-gan, J. Mater. Chem. C, 2017, 5, 3146-3155. [116] Y. Q. Jiang, X. Qian, C. L. Zhu, H. Y. Liu, L. X. Hou, ACS Appl. Mater. Interfaces, 2018, 10, 9379-9389. [117] L. Chen, Y. Zhou, H. Dai, T. Yu, J. G. Liu, Z. G. Zou, Nano Energy, 2015, 11, 697-703. [118] S. Y. Khoo, J. W. Miao, H. B. Yang, Z. M. He, K. C. Leong, B. Liu, T. T. Y. Tan, Adv. Mater. Interfaces, 2015, 2, 1500384. [119] Z. T. Jin, G. Y. Zhao, Z. S. Wang, J. Mater. Chem. C, 2018, 10, 3901-3909. [120] L. Shao, X. Qian, H. M. Li, C. Xu, L. X. Hou, Chem. Eng. J., 2017, 315, 562-572. [121] D. Chen, H. Zhang, Y. Liu, J. H. Li, Energy Environ. Sci., 2013, 6, 1362-1387. [122] J. Wang, Q. W. Tang, B. L. He, P. Z. Yang, J. Power Sources, 2016, 328, 185-194. [123] X. X. Chen, Q. W. Tang, B. L. He, L. Lin, L. M. Yu, Angew. Chem. Int. Ed., 2014, 53, 10799-10803. [124] Z. Q. Xie, X. D. Cui, W. W. Xu, Y. Wang, Electrochim. Aata, 2017, 229, 361-370. [125] X. C. Jiang, H. M. Li, S. L. Li, S. W. Huang, C. L. Zhu, L. X. Hou, Chem. Eng. J., 2018, 334, 419-431. [126] Y. N. Wang, N. Q. Fu, P. Ma, Y. Y. Fang, L. M. Peng, X. W. Zhou, Y. Lin, Appl. Surf. Sci., 2017, 419, 670-677. [127] K. S. Anuratha, S. Mohan, S. K. Panda, New J. Chem., 2016, 40, 1785-1791. [128] A.-L. Su, M.-N. Lu, C.-Y. Chang, T.-C. Wei, J.-Y. Lin, Electrochim. Acta, 2016, 222, 1410-1416. [129] J. H. Huo, J. H. Wu, M. Zheng, Y. G. Tu, Z. Lan, J. Power Sources, 2016, 304, 266-272. [130] F. X. Li, J. L. Wang, L. Zheng, Y. Q. Zhao, N. Huang, P. P. Sun, L. Fang, L. Wang, X. H. Sun, J. Power Sources, 2018, 384, 1-9. [131] J. Liu, Q. W. Tang, B. L. He, J. Power Sources, 2014, 268, 56-62. [132] H. Yuan, Q. Z. Jiao, S. L. Zhang, Y. Zhao, Q. Wu, H. S. Li, J. Power Sources, 2016, 325, 417-426. [133] M. M. Zhang, J. T. Zai, J. Liu, M. Chen, Z. R. Wang, G. Li, X. F. Qian, L. W. Qian, X. B. Yu, Dalton Trans., 2017, 46, 9511-9516. [134] X. J. Zheng, J. Deng, N. Wang, D. H. Deng, W.-H. Zhang, X. H. Bao, C. Li, Angew. Chem. Int. Edit., 2014, 53, 7023-7027. [135] E. Sim, V. D. Dao, H. S. Choi, J. Alloys Compd., 2018, 742, 334-341. [136] P. K. Wei, X. M. Li, J. Li, J. W. Bai, C. J. Jiang, L. Liu, Chem.-Eur. J., 2018, 24, 19032-19037. [137] C. Y. Zhu, F. Xu, J. Chen, H. H. Min, H. Dong, L. Tong, K. Qasim, S. L. Li, L. T. Sun, J. Power Sources, 2016, 303, 159-167. [138] M. Fu, Q. Z. Jiao, Y. Zhao, H. S. Li, J. Mater. Chem. A, 2013, 2, 735-744. [139] J. Y. Park, G. A. Somoriai, Catal. Lett., 2016, 146, 1-11. [140] M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, S. Jin, J. Phys. Chem. C, 2014, 118, 21347-21356. |
[1] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[2] | Keshia Saradima Indriadi, Peijie Han, Shipeng Ding, Bingqing Yao, Shinya Furukawa, Qian He, Ning Yan. Highly dispersed Pt boosts active FexN formation in ammonia decomposition [J]. Chinese Journal of Catalysis, 2023, 50(7): 297-305. |
[3] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
[4] | Gong Zhang, Wei-Song Zhang, Xiao-Yu Wang, Yang Yang, Ding-Wei Ji, Boshun Wan, Qing-An Chen. Ni-catalyzed unnatural prenylation and cyclic monoterpenation of heteroarenes with isoprene [J]. Chinese Journal of Catalysis, 2023, 49(6): 123-131. |
[5] | Peigong Liu, Tiejun Lin, Lei Guo, Xiaozhe Liu, Kun Gong, Taizhen Yao, Yunlei An, Liangshu Zhong. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency [J]. Chinese Journal of Catalysis, 2023, 48(5): 150-163. |
[6] | Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 117-126. |
[7] | Jianxin Feng, Xuan Li, Yucheng Luo, Zhifang Su, Maoling Zhong, Baolan Yu, Jianying Shi. Microenvironment regulation of Ru(bda)L2 catalyst incorporated in metal-organic framework for effective photo-driven water oxidation [J]. Chinese Journal of Catalysis, 2023, 48(5): 127-136. |
[8] | Han-Jun Ai, Fengqian Zhao, Xiao-Feng Wu. SET or TET? Iron-catalyzed aminocarbonylation of unactivated alkyl halides with amines, amides, and indoles via a substrate dependent mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 121-128. |
[9] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[10] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[11] | Shenyu Shen, Qingfeng Guo, Tiantian Wu, Yaqiong Su. The dynamic behaviors of heterogeneous interfaces in electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 52-71. |
[12] | Qixian Xie, Dan Ren, Lichen Bai, Rile Ge, Wenhui Zhou, Lu Bai, Wei Xie, Junhu Wang, Michael Grätzel, Jingshan Luo. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes [J]. Chinese Journal of Catalysis, 2023, 44(1): 127-138. |
[13] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[14] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[15] | Wanjun Sun, Jiayu Zhu, Meiyu Zhang, Xiangyu Meng, Mengxue Chen, Yu Feng, Xinlong Chen, Yong Ding. Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation [J]. Chinese Journal of Catalysis, 2022, 43(9): 2273-2300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||