Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (10): 1408-1420.DOI: 10.1016/S1872-2067(19)63399-1
• Reviews • Previous Articles Next Articles
Jingwei Huanga,b, Pengfei Yuea, Lei Wanga, Houde Shea, Qizhao Wanga,c,d
Received:
2019-03-13
Revised:
2019-04-11
Online:
2019-10-18
Published:
2019-08-26
Supported by:
Jingwei Huang, Pengfei Yue, Lei Wang, Houde She, Qizhao Wang. A review on tungsten-trioxide-based photoanodes for water oxidation[J]. Chinese Journal of Catalysis, 2019, 40(10): 1408-1420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63399-1
[1] World population clock, http://www.worldometers.info/world-population. [2] T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev., 2014, 43, 7520-7535. [3] M. Grätzel, Nature, 2001, 414, 338-344. [4] Z. Wang, L. Wang, Chin. J. Catal., 2018, 39, 369-378. [5] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38. [6] S. Corby, L. Francàs, S. Selim, M. Sachs, C. Blackman, A. Kafizas, J. R. Durrant, J. Am. Chem. Soc., 2018, 140, 16168-16177. [7] G. A. de Wijs, P. K. de Boer, R. A. de Groot, G. Kresse, Phys. Rev. B, 1999, 59, 2684-2693. [8] M. D. Bhatt, J. S. Lee, J. Mater. Chem. A, 2015, 3, 10632-10659. [9] P. M. Woodward, A. W. Sleight, T. Vogt, J. Solid State Chem., 1997, 131, 9-17. [10] R. Diehl, G. Brandt, E. Salje, Acta Crystallogr. B, 1978, 34, 1105-1111. [11] T. Vogt, P. M. Woodward, B. A. Hunter, J. Solid State Chem., 1999, 144, 209-215. [12] E. Salje, Acta Crystallogr. B, 1977, 33, 574-577. [13] W. L. Kehl, R. G. Hay, D. Wahl, J. Appl. Phys., 1952, 23, 212-215. [14] B. Gerand, G. Nowogrocki, J. Guenot, M. Figlarz, J. Solid State Chem., 1979, 29, 429-434. [15] D. B. Migas, V. L. Shaposhnikov, V. N. Rodin, V. E. Borisenko, J. Appl. Phys., 2010, 108, 093713. [16] G. Hodes, D. Cahen, J. Manassen, Nature, 1976, 260, 312-313. [17] W. Kim, T. Tachikawa, D. Monllor-Satoca, H.-I. Kim, T. Majima, W. Choi, Energy Environ. Sci., 2013, 6, 3732-3739. [18] M. Yang, H. He, H. Zhang, X. Zhong, F. Dong, G. Ke, Y. Chen, J. Du, Y. Zhou, Electrochim. Acta, 2018, 283, 871-881. [19] K. Fuku, N. Wang, Y. Miseki, T. Funaki, K. Sayama, ChemSusChem, 2015, 8, 1593-1600. [20] J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Gong, J. Mater. Chem. A, 2018, 6, 3350-3354. [21] J. C. Hill, K.-S. Choi, J. Phys. Chem. C, 2012, 116, 7612-7620. [22] J. Su, X. Feng, J. D. Sloppy, L. Guo, C. A. Grimes, Nano Lett., 2011, 11, 203-208. [23] W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, ACS Nano, 2014, 8, 11770-11777. [24] S. Wang, H. Chen, G. Gao, T. Butburee, M. Lyu, S. Thaweesak, J.-H. Yun, A. Du, G. Liu, L. Wang, Nano Energy, 2016, 24, 94-102. [25] W. Shi, H. Li, J. Chen, X. Lv, Y. Shen, Electrochim. Acta, 2017, 225, 473-481. [26] R. M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-Granados, G. Roselló-Márquez, J. García-Antón, Mater. Design, 2017, 116, 160-170. [27] W. Li, C. Liu, Y. Yang, J. Li, Q. Chen, F. Liu, Mater. Lett., 2012, 84, 41-43. [28] Q. Chen, J. Li, B. Zhou, M. Long, H. Chen, Y. Liu, W. Cai, W. Shangguan, Electrochem. Commun., 2012, 20, 153-156. [29] Q. Zeng, J. Li, J. Bai, X. Li, L. Xia, B. Zhou, Appl. Catal. B, 2017, 202, 388-396. [30] D. D. Qin, C. L. Tao, S. A. Friesen, T. H. Wang, O. K. Varghese, N. Z. Bao, Z. Y. Yang, T. E. Mallouk, C. A. Grimes, Chem. Commun., 2012, 48, 729-731. [31] A. Kafizas, L. Francàs, C. Sotelo-Vazquez, M. Ling, Y. Li, E. Glover, L. McCafferty, C. Blackman, J. Darr, I. Parkin, J. Phys. Chem. C, 2017, 121, 5983-5993. [32] P. M. Rao, I. S. Cho, X. Zheng, Proc. Combust. Inst., 2013, 34, 2187-2195. [33] P. M. Rao, X. Zheng, Proc. Combust. Inst., 2011, 33, 1891-1898. [34] F. Zheng, M. Zhang, M. Guo, Thin Solid Films, 2013, 534, 45-53. [35] L. Li, X. Zhao, D. Pan, G. Li, Chin. J. Catal., 2017, 38, 2132-2140. [36] A. Jelinska, K. Bienkowski, M. Jadwiszczak, M. Pisarek, M. Strawski, D. Kurzydlowski, R. Solarska, J. Augustynski, ACS Catal., 2018, 8, 10573-10580. [37] G. H. Go, P. S. Shinde, C. H. Doh, W. J. Lee, Mater. Design, 2016, 90, 1005-1009. [38] D. Chandra, K. Saito, T. Yui, M. Yagi, ACS Sustain. Chem. Eng., 2018, 6, 16838-16846. [39] S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Sustain. Energy Fuels, 2017, 1, 145-153. [40] K. Song, F. Gao, W. Yang, E. Wang, Z. Wang, H. Hou, ChemElectro-Chem, 2018, 5, 322-327. [41] Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, Adv. Energy Mater., 2016, 6, 1600437. [42] X. Feng, Y. Chen, Z. Qin, M. Wang, L. Guo, ACS Appl. Mater. Interfaces, 2016, 8, 18089-18096. [43] L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Adv. Mater., 2017, 29, 1606793. [44] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater., 2017, 29, 1606459. [45] J. Zheng, Y. Lyu, R. Wang, C. Xie, H. Zhou, S.P. Jiang, S. Wang, Nat. Commun., 2018, 9, 3572. [46] C. Shi, X. Dong, X. Wang, H. Ma, X. Zhang, Chin. J. Catal., 2018, 39, 128-137. [47] K. Qi, S.-Y. Liu, M. Qiu, Chin. J. Catal., 2018, 39, 867-875. [48] Y. Zhao, S. Balasubramanyam, R. Sinha, R. Lavrijsen, M. A. Verheijen, A. A. Bol, A. Bieberle-Hütter, ACS Appl. Energy Mater., 2018, 1, 5887-5895. [49] M. Ma, K. Zhang, P. Li, M. S. Jung, M. J. Jeong, J. H. Park, Angew. Chem., 2016, 128, 11998-12002. [50] T. Soltani, A. Tayyebi, H. Hong, M. H. Mirfasih, B.-K. Lee, Sol. Energy Mater. Sol. Cells, 2019, 191, 39-49. [51] R. Zhang, F. Ning, S. Xu, L. Zhou, M. Shao, M. Wei, Electrochim. Acta, 2018, 274, 217-223. [52] T. Singh, R. Müller, J. Singh, S. Mathur, Appl. Surf. Sci., 2015, 347, 448-453. [53] S. Q. Yu, Y. H. Ling, J. Zhang, F. Qin, Z. J. Zhang, Int. J. Hydrogen Energy, 2017, 42, 20879-20887. [54] F. Chen, H. Huang, L. Ye, T. Zhang, Y. Zhang, X. Han, T. Ma, Adv. Funct. Mater., 2018, 28, 1804284. [55] F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. Jin, J. Ma, J. Mater. Chem. A, 2018, 6, 13412-13418. [56] T. A. Pham, Y. Ping, G. Galli, Nat. Mater., 2017, 16, 401-408. [57] M. Qureshi, K. Takanabe, Chem. Mater., 2017, 29, 158-167. [58] H. Huang, K. Xiao, Y. He, T. Zhang, F. Dong, X. Du, Y. Zhang, Appl. Catal. B, 2016, 199, 75-86. [59] C. Zhou, A. L. Wang, W. Xiao, D. Chao, X. Zhang, N. H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H. J. Fan, Adv. Mater., 2018, 30, 1705516. [60] A. P. Singh, N. Kodan, B. R. Mehta, A. Held, L. Mayrhofer, M. Mose-ler, ACS Catal., 2016, 6, 5311-5318. [61] H. Huang, X. Han, X. Li, S. Wang, P. K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 482-492. [62] B. Chai, C. Liu, C. Wang, J. Yan, Z. Ren, Chin. J. Catal., 2017, 38, 2067-2075. [63] S. Kment, F. Riboni, S. Pausova, L. Wang, L. Wang, H. Han, Z. Hu-bicka, J. Krysa, P. Schmuki, R. Zboril, Chem. Soc. Rev., 2017, 46, 3716-3769. [64] A. Kafizas, Y. Ma, E. Pastor, S. R. Pendlebury, C. Mesa, L. Francàs, F. Le Formal, N. Noor, M. Ling, C. Sotelo-Vazquez, C. J. Carmalt, I. P. Parkin, J. R. Durrant, ACS Catal., 2017, 7, 4896-4903. [65] S. M. H. Hejazi, J. Aghazadeh Mohandesi, M. Javanbakht, Sol. Ener-gy, 2017, 144, 699-706. [66] X. Li, J.-L. Shi, H. Hao, X. Lang, Appl. Catal. B, 2018, 232, 260-267. [67] X. Zhou, N. Liu, P. Schmuki, ACS Catal., 2017, 7, 3210-3235. [68] H. Yu, W. Liu, X. Wang, F. Wang, Appl. Catal. B, 2018, 225, 415-423. [69] C. Khare, K. Sliozberg, R. Meyer, A. Savan, W. Schuhmann, A. Lud-wig, Int. J. Hydrogen Energy, 2013, 38, 15954-15964. [70] W. Sun, D. Wang, Z. U. Rahman, N. Wei, S. Chen, J. Alloys Compd., 2017, 695, 2154-2159. [71] A. A. Ismail, I. Abdelfattah, A. Helal, S. A. Al-Sayari, L. Robben, D. W. Bahnemann, J. Hazard. Mater., 2016, 307, 43-54. [72] J. Mioduska, A. Zielinska-Jurek, M. Janczarek, J. Hupka, J. Nano-mater., 2016, 2016, 3145912. [73] I. A. Castro, G. Byzynski, M. Dawson, C. Ribeiro, J. Photochem. Photobiol. A, 2017, 339, 95-102. [74] C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. O. Scanlon, A. Kafizas, P. K. Thakur, T.-L. Lee, A. Taylor, G. W. Watson, R. G. Pal-grave, J. R. Durrant, C. S. Blackman, I. P. Parkin, Adv. Funct. Mater., 2017, 27, 1605413. [75] S. Meng, W. Sun, S. Zhang, X. Zheng, X. Fu, S. Chen, J. Phys. Chem. C, 2018, 122, 26326-26336. [76] P. Wei, K. Lin, D. Meng, T. Xie, Y. Na, ChemSusChem, 2018, 11, 1746-1750. [77] K. R. Tolod, S. Hernandez, N. Russo, Catalysts, 2017, 7, 13. [78] H. L. Tan, R. Amal, Y. H. Ng, J. Mater. Chem. A, 2017, 5, 16498-16521. [79] P. Chatchai, Y. Murakami, S.-Y. Kishioka, A. Y. Nosaka, Y. Nosaka, Electrochim. Acta, 2009, 54, 1147-1152. [80] J. Su, L. Guo, N. Bao, C. A. Grimes, Nano Lett., 2011, 11, 1928-1933. [81] P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, X. Zheng, Nano Lett., 2014, 14, 1099-1105. [82] Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, T. Kitamori, Small, 2014, 10, 3692-3699. [83] Y. Zhou, L. Zhang, L. Lin, B. R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C. B. Mullins, Y. Zhao, X. Zhang, G. Yu, Nano Lett., 2017, 17, 8012-8017. [84] H. Zhang, W. Zhou, Y. Yang, C. Cheng, Small, 2017, 13, 1603840. [85] N. Iqbal, I. Khan, Z. H. A. Yamani, A. Qurashi, Sol. Energy, 2017, 144, 604-611. [86] Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Appl. Catal. B, 2017, 217, 21-29. [87] S. Xu, D. Fu, K. Song, L. Wang, Z. Yang, W. Yang, H. Hou, Chem. Eng. J., 2018, 349, 368-375. [88] T. Stoll, G. Zafeiropoulos, I. Dogan, H. Genuit, R. Lavrijsen, B. Koopmans, M.N. Tsampas, Electrochem. Commun., 2017, 82, 47-51. [89] Z. Ma, K. Song, L. Wang, F. Gao, B. Tang, H. Hou, W. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 889-897. [90] K. Kim, S. K. Nam, J. H. Park, J. H. Moon, J. Mater. Chem. A, 2019, 7, 4480-4485. [91] I. Grigioni, K. G. Stamplecoskie, E. Selli, P. V. Kamat, J. Phys. Chem. C, 2015, 119, 20792-20800. [92] S. Y. Chae, C. S. Lee, H. Jung, O.-S. Joo, B. K. Min, J. H. Kim, Y. J. Hwang, ACS Appl. Mater. Interfaces, 2017, 9, 19780-19790. [93] I. Grigioni, K. G. Stamplecoskie, D. H. Jara, M. V. Dozzi, A. Oriana, G. Cerullo, P. V. Kamat, E. Selli, ACS Energy Lett., 2017, 2, 1362-1367. [94] I. Grigioni, M. Abdellah, A. Corti, M. V. Dozzi, L. Hammarström, E. Selli, J. Am. Chem. Soc., 2018, 140, 14042-14045. [95] D. A. Grave, N. Yatom, D. S. Ellis, M. C. Toroker, A. Rothschild, Adv. Mater., 2018, 30, 1706577. [96] Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater., 2017, 7, 1700555. [97] W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye, Z. Zou, J. Phys. D, 2007, 40, 1091-1096. [98] K. P. Regan, C. Koenigsmann, S. W. Sheehan, S. J. Konezny, C. A. Schmuttenmaer, J. Phys. Chem. C, 2016, 120, 14926-14933. [99] K. Sivula, F. Le Formal, M. Grätzel, Chem. Mater., 2009, 21, 2862-2867. [100] T. Jin, P. Diao, Q. Wu, D. Xu, D. Hu, Y. Xie, M. Zhang, Appl. Catal. B, 2014, 148-149, 304-310. [101] S. Bai, X. Yang, C. Liu, X. Xiang, R. Luo, J. He, A. Chen, ACS Sustain. Chem. Eng., 2018, 6, 12906-12913. [102] S. Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev., 2015, 44, 362-381. [103] Z. Zhao, T. Butburee, P. Peerakiatkhajohn, M. Lyu, S. Wang, L. Wang, H. Zheng, ChemistrySelect, 2016, 1, 2772-2777. [104] W. Shi, X. Zhang, J. Brillet, D. Huang, M. Li, M. Wang, Y. Shen, Car-bon, 2016, 105, 387-393. [105] W. Kong, X. Zhang, S. Liu, Y. Zhou, B. Chang, S. Zhang, H. Fan, B. Yang, Adv. Mater. Interfaces, 2019, 6, 1801653. [106] J. Zhang, Z. Liu, Z. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 9684-9691. [107] J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho, H. S. Jung, ACS Appl. Mater. Interfaces, 2017, 9, 1479-1487. [108] J. Zhang, H. Ma, Z. Liu, Appl. Catal. B, 2017, 201, 84-91. [109] C. Wang, J. Tang, X. Zhang, L. Qian, H. Yang, Prog. Nat. Sci. Mater., 2018, 28, 200-204. [110] K. C. Leonard, K. M. Nam, H. C. Lee, S. H. Kang, H. S. Park, A. J. Bard, J. Phys. Chem. C, 2013, 117, 15901-15910. [111] K. M. Nam, E. A. Cheon, W. J. Shin, A. J. Bard, Langmuir, 2015, 31, 10897-10903. [112] D. Wang, P. S. Bassi, H. Qi, X. Zhao, Gurudayal, L. H. Wong, R. Xu, T. Sritharan, Z. Chen, Materials, 2016, 9, 348. [113] Z. Hu, M. Xu, Z. Shen, J. C. Yu, J. Mater. Chem. A, 2015, 3, 14046-14053. [114] D. Jeon, N. Kim, S. Bae, Y. Han, J. Ryu, ACS Appl. Mater. Interfaces, 2018, 10, 8036-8044. [115] S. Prabhu, L. Cindrella, O. J. Kwon, K. Mohanraju, Int. J. Hydrogen Energy, 2017, 42, 29791-29796. [116] Z. Li, Y. Qi, W. Wang, D. Li, Z. Li, Y. Xiao, G. Han, J.-R. Shen, C. Li, Chin. J. Catal., 2019, 40, 486-494. [117] Z. Chen, Q. Huang, B. Huang, F. Zhang, C. Li, Chin. J. Catal., 2019, 40, 38-42. [118] M. Z. Rahman, K. Davey, S.-Z. Qiao, J. Mater. Chem. A, 2018, 6, 1305-1322. [119] J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503. [120] Q. Wang, T. Niu, L. Wang, J. Huang, H. She, Chin. J. Catal., 2018, 39, 613-618. [121] T. J. Meyer, M. V. Sheridan, B. D. Sherman, Chem. Soc. Rev., 2017, 46, 6148-6169. [122] K. L. Materna, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev., 2017, 46, 6099-6110. [123] D. Kandi, S. Martha, K. M. Parida, Int. J. Hydrogen Energy, 2017, 42, 9467-9481. [124] C. Gao, J. Wang, H. Xu, Y. Xiong, Chem. Soc. Rev., 2017, 46, 2799-2823. [125] Z. Wang, L. Wang, Sci. China Mater., 2018, 61, 806-821. [126] D. Li, J. Shi, C. Li, Small, 2018, 14, 1704179. [127] S. Sahai, A. Ikram, S. Rai, R. Shrivastav, S. Dass, V. R. Satsangi, Renew. Sustain. Energy Rev., 2017, 68, 19-27. [128] E. A. Gibson, Chem. Soc. Rev., 2017, 46, 6194-6209. [129] Q. Ding, B. Song, P. Xu, S. Jin, Chem, 2016, 1, 699-726. [130] X. Ding, L. Zhang, Y. Wang, A. Liu, Y. Gao, Coord. Chem. Rev., 2018, 357, 130-143. [131] Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, Chem. Eng. J., 2018, 337, 506-514. [132] Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Z. Lei, Appl. Catal. B, 2017, 214, 158-167. [133] R. Liu, Y. Lin, L.Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. Hou, D. Wang, Angew. Chem. Int. Ed., 2011, 50, 499-502. [134] J. A. Seabold, K.-S. Choi, Chem. Mater., 2011, 23, 1105-1112. [135] Q. Liu, Q. Chen, J. Bai, J. Li, J. Li, B. Zhou, J. Solid State Electrochem., 2014, 18, 157-161. [136] J. M. Spurgeon, J. M. Velazquez, M. T. McDowell, Phys. Chem. Chem. Phys., 2014, 16, 3623-3631. [137] X. Fan, B. Gao, T. Wang, X. Huang, H. Gong, H. Xue, H. Guo, L. Song, W. Xia, J. He, Appl. Catal. A, 2016, 528, 52-58. [138] J. Huang, Y. Ding, X. Luo, Y. Feng, J. Catal., 2016, 333, 200-206. [139] W. L. Kwong, C. C. Lee, J. Messinger, J. Phys. Chem. C, 2016, 120, 10941-10950. [140] Z. Xu, X. Li, J. Li, L. Wu, Q. Zeng, Z. Zhou, Appl. Surf. Sci., 2013, 284, 285-290. [141] L. Li, S. Xiao, R. Li, Y. Cao, Y. Chen, Z. Li, G. Li, H. Li, ACS Appl. Energy Mater., 2018, 1, 6871-6880. [142] F. Zhan, W. Liu, W. Li, J. Li, Y. Yang, Y. Li, Q. Chen, Int. J. Hydrogen Energy, 2016, 41, 11925-11932. [143] X. Deng, H. Tüysüz, ACS Catal., 2014, 4, 3701-3714. [144] S. S. Gujral, A. N. Simonov, M. Higashi, X.-Y. Fang, R. Abe, L. Spic-cia, ACS Catal., 2016, 6, 3404-3417. [145] S. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang, C. Li, Angew. Chem. Int. Ed., 2015, 54, 3047-3051. [146] T. Hong, Z. Liu, X. Zheng, J. Zhang, L. Yan, Appl. Catal. B, 2017, 202, 454-459. [147] J. W. Huang, Y. Zhang, Y. Ding, ACS Catal., 2017, 7, 1841-1845. [148] F. Li, C. Xu, X. Wang, Y. Wang, J. Du, L. Sun, Chin. J. Catal., 2018, 39, 446-452. [149] N. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J. Catal., 2018, 39, 228-244. [150] D. W. Shaffer, Y. Xie, J. J. Concepcion, Chem. Soc. Rev., 2017, 46, 6170-6193. [151] J. Lin, B. Ma, M. Chen, Y. Ding, Chin. J. Catal., 2018, 39, 463-471. [152] S.-S. Wang, G.-Y. Yang, Chem. Rev., 2015, 115, 4893-4962. [153] Y. Ji, L. Huang, J. Hu, C. Streb, Y.-F. Song, Energy Environ. Sci., 2015, 8, 776-789. [154] R. H. Crabtree, Chem. Rev., 2015, 115, 127-150. [155] Z. Yu, F. Li, L. Sun, Energy Environ. Sci., 2015, 8, 760-775. [156] B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Gar-cía-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. García de Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Science, 2016, 352, 333-337. [157] B. M. Klepser, B. M. Bartlett, J. Am. Chem. Soc., 2014, 136, 1694-1697. [158] X. Hu, X.-J. Zheng, Y. Li, D.-K. Ma, Mater. Lett., 2018, 220, 36-39. [159] H. Tong, Y. Jiang, Q. Zhang, J. Li, W. Jiang, D. Zhang, N. Li, L. Xia, ChemSusChem, 2017, 10, 3268-3275. [160] Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, W. D. Wei, Chem. Rev., 2018, 118, 2927-2954. [161] Q. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li, L. Zou, Q. Huang, Z. Zou, H. Yang, ACS Sustain. Chem. Eng., 2018, 6, 6378-6387. [162] T. G. U. Ghobadi, A. Ghobadi, E. Ozbay, F. Karadas, ChemPhoto-Chem, 2018, 2, 161-182. [163] L. Wang, H. Hu, N. T. Nguyen, Y. Zhang, P. Schmuki, Y. Bi, Nano Energy, 2017, 35, 171-178. [164] G. Liu, K. Du, J. Xu, G. Chen, M. Gu, C. Yang, K. Wang, H. Jakobsen, J. Mater. Chem. A, 2017, 5, 4233-4253. [165] D. Hu, P. Diao, D. Xu, Q. Wu, Nano Rese., 2016, 9, 1735-1751. [166] P. Zhang, T. Wang, J. Gong, Adv. Mater., 2015, 27, 5328-5342. [167] Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Chem. Eng. J., 2017, 326, 411-418. [168] P.-Y. Kuang, P.-X. Zheng, Z.-Q. Liu, J.-L. Lei, H. Wu, N. Li, T.-Y. Ma, Small, 2016, 12, 6735-6744. [169] R. Solarska, A. Królikowska, J. Augustyński, Angew. Chem. Int. Ed., 2010, 49, 7980-7983. [170] K. H. Ng, L. Jeffery Minggu, N. A. Jaafar, K. Arifin, M. B. Kassim, Sol. Energy Mater. Sol. Cells, 2017, 172, 361-367. [171] F. Xu, Y. Yao, D. Bai, R. Xu, J. Mei, D. Wu, Z. Gao, K. Jiang, J. Colloid Interface Sci., 2015, 458, 194-199. [172] Z. Liu, J. Wu, J. Zhang, Int. J. Hydrogen Energy, 2016, 41, 20529-20535. |
[1] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[5] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[6] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[7] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[8] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[9] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[10] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[11] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[12] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[13] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[14] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[15] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||