Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (10): 1421-1437.DOI: 10.1016/S1872-2067(19)63408-X
• Reviews • Previous Articles Next Articles
Ting-Ting Zhaoa,b, Guang-Hui Fenga,b, Wei Chenb, Yan-Fang Songb, Xiao Dongb, Gui-Hua Lib, Hai-Jiao Zhanga, Wei Weib,c
Received:
2019-03-23
Revised:
2019-05-11
Online:
2019-10-18
Published:
2019-08-26
Supported by:
Ting-Ting Zhao, Guang-Hui Feng, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Hai-Jiao Zhang, Wei Wei. Artificial bioconversion of carbon dioxide[J]. Chinese Journal of Catalysis, 2019, 40(10): 1421-1437.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63408-X
[1] U. N., World Economic Situation and Prospects (Zhongguo Caizheng), 2018. [2] B. C. O'Neill, M. Oppenheimer, Science, 2002, 296, 1971-1972. [3] J. Wu, X. D. Zhou, Chin. J. Catal., 2016, 37, 999-1015. [4] B. James, Chem. Soc. Rev., 2009, 38, 185-196. [5] H. Li, J. C. Liao, Energy Environ. Sci., 2013, 6, 2892-2899. [6] L. Wei, Q. Wang, Y. Xin, Y. Lu, J. Xu, Algal Res., 2017, 27, 366-375. [7] C. Wu, Y. Zhou, Z. Zou, Chin. J. Catal., 2011, 32, 1565-1572. [8] L. Shi, G. H. Yang, K. Tao, Y. Yoneyama, Y. S. Tan, N. Tsubaki, Acc. Chem. Res., 2013, 48, 1838-1847. [9] C. Liu, B. C. Colon, M. Ziesack, P. A. Silver, D. G. Nocera, Science, 2016, 352, 1210-1213. [10] J. P. Torella, C. J. Gagliardi, J. S. Chen, D. K. Bediako, B. Colón, J. C. Way, P. A.Silver, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 2337-2342. [11] M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S. M. Zakeeruddin, J. Luo, M. T. Mayer, M. Grätzel, Nat. Commun., 2015, 6(7326), 1-6. [12] M. Schreier, F. Héroguel, L. Steier, S. Ahmad, J. S. Luterbacher, M. T. Mayer, J. Luo, M. Grätzel, Nat. Energy, 2017, 2(17087), 1-9. [13] S. Liu, H. Tao, Q. Liu, Z. Xu, Q. Liu, J.-L. Luo, ACS Catal., 2018, 8, 1469-1475. [14] X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin, O. Voznyy, L. Han, F. P. G. de Arquer, M. Liu, C. T. Dinh, T. Regier, J. J. Dynes, S. He, H. L. Xin, H. Peng, D. Prendergast, X. Du, E. H. Sargent, Nat. Chem., 2018, 10, 149-154. [15] S. Liu, J. Xiao, X. F. Lu, J. Wang, X. Wang, X. W. Lou, Angew. Chem. Int. Ed., 2019, 58, 8499-8503. [16] H. J. Shin, K. A. Jung, C. W. Nam, J. M. Park, Bioresour. Technol., 2017, 245, 1421-1429. [17] G. Mohanakrishna, K. Vanbroekhoven, D. Pant, React. Chem. Eng., 2018, 3, 371-378. [18] S. Bajracharya, S. Srikanth, G. Mohanakrishna, R. Zacharia, D. P. B. T. B. Strik, D. Pant, J. Power Sources, 2017, 356, 256-273. [19] K. P. Nevin, T. L. Woodard, A. E. Franks, Z. M. Summers, D. R. Lovley, Mbio, 2010, 1, e00103-10/1-e00103-10/4, doi:10.1128/mBio.00103-10. [20] K. K. Sakimoto, N. Kornienko, P. Yang, Acc. Chem. Res., 2017, 50, 476-481. [21] X. Christodoulou, T. Okoroafor, S. Parry, S. B. Velasquez-Orta, J. CO2 Util., 2017, 18, 390-399. [22] X. Christodoulou, S. B. Velasquez-Orta, Environ. Sci. Technol., 2016, 50, 11234-11242. [23] P. Zhang, Y. Yang, J. Shi, Y. Zheng, L. Wang, X. Li, Renew. Sustain. Energy Rev., 2009, 13, 439-449. [24] R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Mosre, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre. Science, 2011, 332, 805-809. [25] T. Zhang, Science, 2015, 350, 738-739. [26] H. W. Zhu, Y. P. Zhang, Y. Li, Sci. Sin. Vitae, 2016, 46, 1388-1399. [27] P. Gao, S. Li, X. Bu, S. Dang, Z. Liu, H. Wang, L. Zhong, M. Qiu, C. Yang, J. Cai, W. Wei, Y. Sun, Nat. Chem., 2017, 9, 1019-1024. [28] P.-L. Tremblay, T. Zhang, Front. Microbiol., 2015, 6, 201/1-201/10. [29] J. Du, C. Catania, G. C. Bazan, Chem. Mater., 2014, 26, 686-697. [30] T. Zhang, H. Nie, T. S. Bain, H. Lu, M. Cui, O. L. Snoeyenbos-West, A. E. Franks, K. P. Nevin, T. P. Russell, D. R. Lovley, Energy Environ. Sci., 2013, 6, 217-224. [31] K. P. Nevin, S. A. Hensley, A. E. Franks, Z. M. Summers, J. Ou, T. L. Woodard, O. L. Snoeyenbos-West, D. R. Lovley, Appl. Environ. Microbiol., 2011, 77, 2882-2886. [32] J. Sadhukhan, J. R. Lloyd, K. Scott, G. C. Premier, E. H. Yu, T. Curtis, I. M. Head, Renew. Sustain. Energy Rev., 2016, 56, 116-132. [33] S. Bajracharya, A. ter Heijne, X. D. Benetton, K. Vanbroekhoven, C. J. N. Buisman, D. P. B. T. B. Strik, D. Pant, Bioresource Technol., 2015, 195, 14-24. [34] C. W. Marshall, D. E. Ross, E. B. Fichot, N. S. Norman, H. D. May, Environ. Sci. Technol., 2013, 47, 6023-6029. [35] L. Jourdin, S. Freguia, B. C. Donose, J. Chen, G. G. Wallace, J. Keller, V. Flexer, J. Mater. Chem. A, 2014, 2, 13093-13102. [36] V. Flexer, J. Chen, B. C. Donose, P. Sherrell, G. G. Wallace, J. Keller, Energy Environ. Sci., 2013, 6, 1291-1298. [37] N. S. Malvankar, D. R. Lovley, Curr. Opin. Biotechnol., 2014, 27, 88-95. [38] K. K. Sakimoto, C. Liu, J. Lim, P. Yang, Nano Lett., 2014, 14, 5471-5476. [39] H. E. Jeong, I. Kim, P. Karam, H.-J. Choi, P. Yang, Nano Lett., 2013, 13, 2864-2869. [40] G. Z. Ramon, B. J. Feinberg, E. M. V. Hoek, Energy Environ. Sci., 2011, 4, 4423-4434. [41] R. D. Cusick, Y. Kim, B. E. Logan, Science, 2012, 335, 1474-1477. [42] X. Li, I. Angelidaki, Y. Zhang, Water Res., 2018, 142, 396-404. [43] C. Liu, J. Tang, H. M. Chen, B. Liu, P. Yang, Nano Lett., 2013, 13, 2989-2992. [44] C. Liu, J. J. Gallagher, K. K. Sakimoto, E. M. Nichols, C. J. Chang, M. C. Y. Chang, P. Yang, Nano Lett., 2015, 15, 3634-3639. [45] N. Kornienko, K. K. Sakimoto, D. M. Herlihy, S. C. Nguyen, A. P. Alivisatos, C. B. Harris, A. Schwartzberg, P. Yang, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 11750-11755. [46] Y. Amao, R. Kataoka, Catal. Today, 2018, 307, 243-247. [47] R. K. Yadav, J.-O. Baeg, A. Kumar, K.-J. Kong, G. H. Oh, N.-J. Park, J. Mater. Chem. A, 2014, 2, 5068-5076. [48] N. Aryal, A. Halder, P.-L. Tremblay, Q. Chi, T. Zhang, Electrochim. Acta, 2016, 217, 117-122. [49] Y. Li, Sci. China Mater., 2016, 59, 93-94. [50] W. Wang, J. Chen, C. Li, W. Tian, Nat. Commun., 2014, 5, 4647/1-4647/8. [51] K. Sauer, V. K. Yachandra, Biochim. Biophys. Acta-Bioenerg., 2004, 1655, 140-148. [52] Y. N. Wang, C. X. Zhang, L. Wang, J. Q. Zhao, Chin. Sci. Bull., 2013, 58, 3213-3216. [53] W. Wang, Z. Wang, Q. Zhu, G. Han, C. Ding, J. Chen, J. R. Shen, C. Li, Chem. Commun., 2015, 51, 16952-16955. [54] W. Wang, Z. Li, J. Chen, C. Li, J. Phy. Chem. C, 2017, 121, 2605-2612. [55] S. Ye, C. Ding, R. Chen, F. Fan, P. Fu, H. Yin, X. Wang, Z. Wang, P. Du, C. Li, J. Am. Chem. Soc., 2018, 140, 3250-3256. [56] F. Wen, C. Li, Acc. Chem. Res., 2013, 46, 2355-2364. [57] Y. Li, Chin. J. Biotechnol., 2009, 25, 1281-1284. [58] J. E. Bailey, Science, 1991, 252, 1668-1675. [59] M. Koffas, C. Roberge, K. Lee, G. Stephanopoulos, Ann. Rev. Biomed. Eng., 1999, 1, 535-557. [60] T. Minowa, S. Yokoyama, M. Kishimoto, T. Okakura, Fuel, 1995, 74, 1735-1738. [61] S. Hirayama, R. Ueda, Y. Ogushi, A. Hirano, Y. Samejima, K. Hon-Nami, S. Kunito, Stud. Surf. Sci. Catal., 1998, 114, 657-660. [62] L. Wei, Y. Xin, Q. Wang, J. Yang, H. Hu, J. Xu, Plant J., 2017, 89, 1236-1250. [63] M. Liu, Y. Ding, H. Chen, Z. Zhao, H. Liu, M. Xian, G. Zhao, BMC Microbiol., 2017, 17, 10/1-10/9. [64] F. Gong, Z. Cai, Y. Li, Sci. China Life Sci., 2016, 59, 1106-1114. [65] A. Bar-Even, E. Noor, N. E. Lewis, R. Milo, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 8889-8894. [66] M. S. Khan, Trends Biotechnol., 2007, 25, 437-440. [67] Y. Marcus, H. Altman-Gueta, Y. Wolff, M. Gurevitz, J. Exp. Bot., 2011, 62, 4173-4182. [68] D. M. Kramer, J. R. Evans, Plant Physiol., 2011, 155, 70-78. [69] J. R. Evans, Plant Physiol., 2013, 162, 1780-1793. [70] J. Zhou, F. Zhang, H. Meng, Y. Zhang, Y. Li, Metab. Eng., 2016, 38, 217-227. [71] F. Liang, P. Lindblad, Metab. Eng. Commun., 2017, 4, 29-36. [72] E. Herz, N. Antonovsky, Y. Bar-On, D. Davidi, S. Gleizer, N. Prywes, L. Noda-Garcia, K. L. Frisch, Y. Zohar, D. G. Wernick, A. Savidor, U. Barenholz, R. Milo, Nat. Commun., 2017, 8, 1705/1-1705/10. [73] N. Antonovsky, S. Gleizer, E. Noor, Y. Zohar, E. Herz, U. Baren-holz, L. Zelcbuch, S. Amram, A. Wides, N. Tepper, D. David, Y. Bar-On, T. Bareis, D. G. Wemick, I. Shani, S. Malitsky, G. Jona, A. Bar-Even, R. Milo, Cell, 2016, 166, 115-125. [74] T. O. Yeates, N. M. Wheatley, Science, 2017, 358, 1253-1254. [75] H. Aigner, R. H. Wilson, A. Bracher, L. Calisse, J. Y. Bhat, F. U. Hartl, M. Hayer-Hartl, Science, 2017, 358, 1272-1278. [76] S. Schlager, A. Fuchsbauer, M. Haberbauer, H. Neugebauer, N. S. Sariciftci, J. Mater. Chem. A, 2017, 5, 2429-2443. [77] F. Marpani, M. Pinelo, A. S. Meyer, Biochem. Eng. J., 2017, 127, 217-228. [78] K. Kalyanasundaram, M. Graetzel, Curr. Opin. Biotechnol., 2010, 21, 298-310. [79] Y. Surendranath, D. K. Bediako, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 15617-15621. [80] D. G. Nocera, Acc. Chem. Res., 2012, 45, 767-776. [81] G. A. Olah, A. Goeppert, G. K. S. Prakash, Beyond Oil and Gas:The Methanol Economy, 2nd ed., Wiley-VCH, Weinheim, 2009. [82] R. Obert, B. C. Dave, J. Am. Chem. Soc., 1999, 121, 12192-12193. [83] S.-W. Xu, Y. Lu, J. Li, Z.-Y. Jiang, H. Wu, Ind. Eng. Chem. Res., 2006, 45, 4567-4573. [84] M. Aresta, A. Dibenedetto, C. Pastore, Environ. Chem. Lett., 2005, 3, 113-117. [85] P. K. Addo, R. L. Arechederra, S. D. Minteer, Electroanalysis, 2010, 22, 807-812. [86] J.-H. Jeoung, H. Dobbek, Science, 2007, 318, 1461-1464. [87] M. Villano, F. Aulenta, C. Ciucci, T. Ferri, A. Giuliano, M. Majone, Bioresource Technol., 2010, 101, 3085-3090. [88] S. Cheng, D. Xing, D. F. Call, B. E. Logan, Environ. Sci. Technol., 2009, 43, 3953-3958. [89] S. Schlager, L. M. Dumitru, M. Haberbauer, A. Fuchsbauer, H. Neugebauer, D. Hiemetsberger, A. Wagner, E. Portenkirchner, N. S. Sariciftci, ChemSusChem, 2016, 9, 631-635. [90] T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale, F. A. Arm-strong, Energy Environ. Sci., 2011, 4, 2393-2399. [91] T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale, F. A. Armstrong, J. Am. Chem. Soc., 2010, 132, 2132-2133. [92] L. Dan, G. Feng, S. Fan, J. Microbiol., 2003, 23(6), 42-46. [93] K. Manthiram, B. J. Beberwyck, A. P. Alivisatos, J. Am. Chem. Soc., 2014, 136, 13319-13325. [94] Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Phys. Chem. B, 2002, 106, 15-17. [95] S. Cheng, D. Xing, D. F. Call, B. E. Logan, Environ. Sci. Technol., 2009, 43, 3953-3958. [96] E. M. Nichols, J. J. Gallagher, C. Liu, Y. Su, J. Resasco, Y. Yu, Y. Sun, P. Yang, M. C. Y. Chang, C. J. Chang, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 11461-11466. [97] J. Song, Y. Kim, M. Lim, H. Lee, J. I. Lee, W. Shin, ChemSusChem, 2011, 4, 587-590. [98] S. Y. Lee, S. Y. Lim, D. Seo, J.-Y. Lee, T. D. Chung, Adv. Energy Ma-ter., 2016, 6, 1502207. [99] J. Shi, C. Yang, S. Zhang, X. Wang, Z. Jiang, W. Zhang, X. Song, Q. Ai, C. Tian, ACS Appl. Mater. Interfaces, 2013, 5, 9991-9997. [100] D. R. Dreyer, D. J. Miller, B. D. Freeman, D. R. Paul, C. W. Bielawski, Chem. Sci., 2013, 4, 3796-3802. [101] K. Kang, S. Lee, R. Kim, I. S. Choi, Y. Nam, Angew. Chem. Int. Ed., 2012, 51, 13101-13104. [102] F. Jin, X. Zeng, J. Liu, Y. Jin, L. Wang, H. Zhong, G. Yao, Z. Huo, Sci. Rep., 2014, 4, 4503/1-4503/8. [103] N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729-15735. [104] Y. Amao, M. Fujimura, M. Miyazaki, A. Tadokoro, M. Nakamura, N. Shuto, New J. Chem., 2018, 42, 9269-9280. [105] J. Liu, R. Cazelles, Z. P. Chen, H. Zhou, A. Galarneau, M. Anto-nietti, Phys. Chem. Chem. Phys., 2014, 16, 14699-14705. [106] K. Ma, O. Yehezkeli, E. Park, J. N. Cha, ACS Catal., 2016, 6, 6982-6986. [107] R. K. Yadav, G. H. Oh, N.-J. Park, A. Kumar, K. Kong, J.-O. Baeg, J. Am. Chem. Soc., 2014, 136, 16728-16731. [108] R. K. Yadav, J. O. Baeg, G. H. Oh, N. J. Park, K. Kong, J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc., 2012, 134, 11455-11461. [109] Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen, Adv. Mater., 2009, 21, 1275-1279. [110] O. Heichal-Segal, S. Rappoport, S. Braun, Bio/Technology, 1995, 13, 798-800. [111] Z. Lian, D. Pan, W. Wang, D. Zhang, G. Li, H. Li, J. Environ. Sci., 2017, 60, 108-113. [112] H. Huber, M. Gallenberger, U. Jahn, E. Eylert, I. A. Berg. D. Kockelkorn. W. Eisenreich. G. Fuchs, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 7851-7856. [113] E. Blanchet, F. Duquenne, Y. Rafrafi, L. Etcheverry, B. Erable, A. Bergel, Energy Eviron. Sci., 2015, 8, 3731-3744. [114] F. Ammam, P.-L. Tremblay, D. M. Lizak, T. Zhang, Biotechnol. Biofuels, 2016, 9, 163/1-163/10. [115] H. Nie, T. Zhang, M. Cui, H. Lu, D. R. Lovley, T. P. Russell, Phys. Chem. Chem. Phys., 2013, 15, 14290-14294. [116] T. Song, K. Fei, H. Zhang, H. Yuan, Y. Yang, P. Ouyang, J. Xie, J. Chem. Technol. Biotechnol., 2018, 93, 457-466. [117] B. Bian, M. F. Alqahtani, K. P. Katuri, D. Liu, S. Bajracharya, Z. Lai, K. Rabaey, P. E. Saikaly, J. Mater. Chem. A, 2018, 6, 17201-17211. [118] C. Lu, H. Bai, B. Wu, F. Su, J. F. Hwang, Energy Fuels, 2008, 22, 3050-3056. [119] M. Rahimi, J. K. Singh, F. Müller-Plathe, J. Phys. Chem. C, 2015, 119, 15232-15239. [120] M. Rahimi, J. K. Singh, D. J. Babu, J. J. Schneider, F. Müller-Plathe, J. Phys. Chem. C, 2013, 117, 13492-13501. [121] Y. Zheng, Y. Jiao, Y. Zhu, H. L. Li, Y. Han, Y. Chen, A. Du, M. Jaro-niec, S. Z. Qiao, Nat. Commun., 2014, 5, 3783/1-3783/8. [122] M. C. Y. Chang, R. A. Eachus, W. Trieu, D.-K. Ro, J. D. Keasling, Nat. Chem. Biol., 2007, 3, 274-277. [123] J. D. Keasling, Science, 2010, 330, 1355-1358. [124] K. K. Sakimoto, S. J. Zhang, P. Yang, Nano Lett., 2016, 16, 5883-5887. [125] V. Mueller, Science, 2016, 351, 34. [126] K. K. Sakimoto, A. B. Wong, P. Yang, Science, 2016, 351, 74-77. [127] A. Hirano, R. Ueda, S. Hirayama, Y. Ogushi, Energy, 1997, 22, 137-142. [128] M. De Deng, J. R. Coleman, Appl. Environ. Microbiol., 1999, 65, 523-528. [129] T. Kaneko, S. Tabata, Plant Cell Physiol., 1997, 38, 1171-1176. [130] J. Dexter, P. Fu, Energy Environ. Sci., 2009, 2, 857-864. [131] Z. Gao, H. Zhao, Z. Li, X. Tan, X. Lu, Energy Environ. Sci., 2012, 5, 9857-9865. [132] J. Kopka, S. Schmidt, F. Dethloff, N. Pade, S. Berendt, M. Schott-kowski, N. Martin, U. Dühring, E. Kuchmina, H. Enke, Biotechnol. Biofuels, 2017, 10, 56/1-56/21. [133] A. Pohlmann, W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, T. Eitinger, C. Ewering, M. Pötter, E. Schwartz, A. Strittmatter, I. Voβ, G. Gottschalk, A. Steinbüchel, B. Friedrich, B. Bowien, Nat. Biotechnol., 2006, 24, 1257-1262. [134] M. Calvin, A. A. Benson, Science, 1949, 109, 140-142. [135] A. J. Esswein, Y. Surendranath, S. Y. Reece, D. G. Nocera, Energy Environ. Sci., 2011, 4, 499-504. [136] D. R. Lovley, Environ. Microbiol. Rep., 2011, 3, 27-35. [137] K. Rabaey, R. A. Rozendal, Nat. Rev. Microbiol., 2010, 8, 706-716. [138] S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, D. G. Nocera, Science, 2011, 334, 645-648. [139] X. Chen, Y. Cao, F. Li, Y. Tian, H. Song, ACS Catal., 2018, 8, 4429-4437. [140] G. G. B. Tcherkez, G. D. Farquhar, T. J. Andrews, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 7246-7251. [141] J. Zhou, H. Zhang, Y. Zhang, Y. Li, Y. Ma, Metab. Eng., 2012, 14, 394-400. [142] H. Li, P. H. Opgenorth, D. G. Wernick, S. Rogers, T.-Y. Wu, W. Higashide, P. Malati, Y.-X. Huo, K. M. Cho, J. C. Liao, Science, 2012, 335, 1596. [143] R. Ganigué, S. Puig, P. Batlle-Vilanova, M. D. Balaguer, J. Colprim, Chem. Commun., 2015, 51, 3235-3238. [144] P. Batlle-Vilanova, R. Ganigué, S. Ramió-Pujol, L. Bañeras, G. Jiménez, M. Hidalgo, M. D. Balaguer, J. Colprim, S. Puig, Bioelectrochemistry, 2017, 117, 57-64. [145] E. I. Lan, J. C. Liao, Metab. Eng., 2011, 13, 353-363. [146] V. J. J. Martin, D. J. Pitera, S. T. Withers, J. D. Newman, J. D. Keasling, Nat. Biotechnol., 2003, 21, 796-802. [147] P. Lindberg, S. Park, A. Melis, Metab. Eng., 2010, 12, 70-79. [148] X. Gao, F. Gao, D. Liu, H. Zhang, X. Nie, C. Yang, Energy Environ. Sci., 2016, 9, 1400-1411. |
[1] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[2] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[3] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[4] | Zhi-Yu Bo, Si-Shun Yan, Tian-Yu Gao, Lei Song, Chuan-Kun Ran, Yi He, Wei Zhang, Guang-Mei Cao, Da-Gang Yu. Visible-light photoredox-catalyzed selective carboxylation of C(sp2)-F bonds in polyfluoroarenes with CO2 [J]. Chinese Journal of Catalysis, 2022, 43(9): 2388-2394. |
[5] | Huayang Zhang, Wenjie Tian, Xiaoguang Duan, Hongqi Sun, Yingping Huang, Yanfen Fang, Shaobin Wang. Single-atom catalysts on metal-based supports for solar photoreduction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2301-2315. |
[6] | Wanjun Sun, Jiayu Zhu, Meiyu Zhang, Xiangyu Meng, Mengxue Chen, Yu Feng, Xinlong Chen, Yong Ding. Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation [J]. Chinese Journal of Catalysis, 2022, 43(9): 2273-2300. |
[7] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[8] | Ke Jing, Ming-Kai Wei, Si-Shun Yan, Li-Li Liao, Ya-Nan Niu, Shu-Ping Luo, Bo Yu, Da-Gang Yu. Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free [J]. Chinese Journal of Catalysis, 2022, 43(7): 1667-1673. |
[9] | Yaping Yi, Chanjuan Xi. Photo-catalyzed sequential dearomatization/carboxylation of benzyl o-halogenated aryl ether with CO2 leading to spirocyclic carboxylic acids [J]. Chinese Journal of Catalysis, 2022, 43(7): 1652-1656. |
[10] | Lu Wang, Chaorong Qi, Wenfang Xiong, Huanfeng Jiang. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies [J]. Chinese Journal of Catalysis, 2022, 43(7): 1598-1617. |
[11] | Fenglei Lyu, Wei Hua, Huirong Wu, Hao Sun, Zhao Deng, Yang Peng. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1417-1432. |
[12] | Boyu Zhang, Jiafu Shi, Yang Zhao, Han Wang, Ziyi Chu, Yu Chen, Zhenhua Wu, Zhongyi Jiang. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization [J]. Chinese Journal of Catalysis, 2022, 43(4): 1184-1191. |
[13] | Linlin Wang, Xin Li, Leiduan Hao, Song Hong, Alex W. Robertson, Zhenyu Sun. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene [J]. Chinese Journal of Catalysis, 2022, 43(4): 1049-1057. |
[14] | Yucong Miao, Mingfei Shao. Photoelectrocatalysis for high-value-added chemicals production [J]. Chinese Journal of Catalysis, 2022, 43(3): 595-610. |
[15] | Hong Li, Kun Jiang, Shou-Zhong Zou, Wen-Bin Cai. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies [J]. Chinese Journal of Catalysis, 2022, 43(11): 2772-2791. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||