Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (10): 1516-1524.DOI: 10.1016/S1872-2067(19)63386-3
• Articles • Previous Articles Next Articles
Yuzhuo Chen, Xiangqian Kong, Shanjun Mao, Zhe Wang, Yutong Gong, Yong Wang
Received:
2019-05-10
Revised:
2019-05-25
Online:
2019-10-18
Published:
2019-08-26
Supported by:
Yuzhuo Chen, Xiangqian Kong, Shanjun Mao, Zhe Wang, Yutong Gong, Yong Wang. Study of the role of alkaline sodium additive in selective hydrogenation of phenol[J]. Chinese Journal of Catalysis, 2019, 40(10): 1516-1524.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63386-3
[1] S. Galvagno, A. Donato, G. Neri, R. Pietropaolo, J. Chem. Technol. Biot., 1991, 51, 145-153. [2] S. T. Srinivas, P. K. Rao, J. Chem. Soc., Chem. Commun., 1993, 33-34. [3] R. Liu, H. Huang, H. Li, Y. Liu, J. Zhong, Y. Li, S. Zhang, Z. Kang, ACS Catal., 2014, 4, 328-336. [4] Y. Liu, H. Tsunoyama, T. Akita, S. Xie, T. Tsukuda, ACS Catal., 2011, 1, 2-6. [5] Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Angew. Chem. Int. Ed., 2010, 49, 3356-3359. [6] N. Mahata, V. Vishwanathan, Catal. Today, 1999, 49, 65-69. [7] G. Neri, A. M. Visco, A. Donato, C. Milone, M. Malentacchi, G. Gubitosa, Appl. Catal. A, 1994, 110, 49-59. [8] H. Liu, T. Jiang, B. Han, S. Liang, Y. Zhou, Science, 2009, 326, 1250-1252. [9] Y. Pérez, M. Fajardo, A. Corma, Catal. Commun., 2011, 12, 1071-1074. [10] K. A. Resende, C. E. Hori, F. B. Noronha, H. Shi, O. Y. Gutierrez, D. M. Camaioni, J. A. Lercher, Appl. Catal. A, 2017, 548, 128-135. [11] T. F. S. Silva, G. S. Mishra, M. F. Guedes da Silva, R. Wanke, L. M. D. R. S. Martins, A. J. L. Pombeiro, Dalton. Trans., 2009, 9207-9215. [12] U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinacé, E. L. Pires, Appl. Catal. A, 2001, 211, 1-17. [13] S. Narayanan, K. Krishna, Appl. Catal. A, 1996, 147, L253-L258. [14] K. V. R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda, Catal. Commun., 2007, 8, 471-477. [15] S. Velu, M. P. Kapoor, S. Inagaki, K. Suzuki, Appl. Catal. A, 2003, 245, 317-331. [16] M. Chatterjee, H. Kawanami, M. Sato, A. Chatterjee, T. Yokoyama, T. Suzuki, Adv. Synth. Catal., 2009, 351, 1912-1924. [17] I. Dodgson, K. Griffin, G. Barberis, F. Pignataro, G. Tauszik, Chem. Ind., 1989, 830-833. [18] S. T. Srinivas, L. Jhansi Lakshmi, P. Kanta Rao, Appl. Catal. A, 1994, 110, 167-172. [19] Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, J. Am. Chem. Soc., 2011, 133, 2362-2365. [20] C. Zhao, Y. Kou, A. A. Lemonidou, X. Li, J. A. Lercher, Angew. Chem. Int. Ed., 2009, 48, 3987-3990. [21] Y. L. Cao, S. J. Mao, M. M. Li, Y. Q. Chen, Y. Wang, ACS Catal., 2017, 7, 8090-8112. [22] L. F. Shen, S. J. Mao, J. Q. Li, M. M. Li, P. Chen, H. R. Li, Z. R. Chen, Y. Wang, J. Catal., 2017, 350, 13-20. [23] M. Irfan, T. N. Glasnov, C. O. Kappe, ChemSusChem, 2011, 4, 300-316. [24] X. Kong, Z. Fang, X. Bao, Z. Wang, S. Mao, Y. Wang, J. Catal., 2018, 367, 139-149. [25] D. M. Roberge, L. Ducry, N. Bieler, P. Cretton, B. Zimmermann, Chem. Eng. Technol., 2005, 28, 318-323. [26] C. Wiles, P. Watts, Green Chem., 2012, 14, 38-54. [27] K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem. Int. Ed., 2004, 43, 406-446. [28] S. Y. Tang, R. A. Bourne, R. L. Smith, M. Poliakoff, Green Chem., 2008, 10, 268-269. [29] Y. Z. Chen, Z. Wang, S. J. Mao, Y. Wang, Chin. J. Catal., 2019, accepted. [30] R. Portela, S. Suárez, S.B. Rasmussen, N. Arconada, Y. Castro, A. Durán, P. Ávila, J.M. Coronado, B. Sánchez, Catal. Today, 2010, 151, 64-70. [31] L. J. Durndell, K. Wilson, A. F. Lee, RSC Adv., 2015, 5, 80022-80026. [32] X. Kong, Y. Gong, S. Mao, Y. Wang, ChemNanoMat, 2018, 4, 432-450. [33] L. Giraldo, M. Bastidas-Barranco, J. C. Moreno-Piraján, Mole-cules, 2014, 19, 20594. [34] N. Mahata, K. V. Raghavan, V. Vishwanathan, C. Park, M. A. Keane, Phys. Chem. Chem. Phys., 2001, 3, 2712-2719. [35] F. Zhang, S. Chen, H. Li, X.-M. Zhang, H. Yang, RSC Adv., 2015, 5, 102811-102817. [36] Y. Li, X. Xu, P. Zhang, Y. Gong, H. Li, Y. Wang, RSC Adv., 2013, 3, 10973-10982. [37] X. Xu, H. Li, Y. Wang, ChemCatChem, 2014, 6, 3328-3332. [38] N. Mahata, K. V. Raghavan, V. Vishwanathan, Appl. Catal. A, 1999, 182, 183-187. [39] S. G. Shore, E. Ding, C. Park, M. A. Keane, J. Mol. Catal. A, 2004, 212, 291-300. [40] X. Li, Z. Wang, S. Mao, Y. Chen, M. Tang, H. Li, Y. Wang, Chin. J. Chem., 2018, 36, 1191-1196. [41] N. Mahata, K. V. Raghavan, V. Vishwanathan, M. A. Keanea, React. Kinet. Catal. Lett., 2001, 72, 297-302. [42] T. Mori, H. Masuda, H. Imai, A. Miyamoto, H. Niizuma, T. Hattori, Y. Murakami, J. Mol. Catal., 1984, 25, 263-271. [43] P. Vernoux, A. Y. Leinekugel-Le-Cocq, F. Gaillard, J. Catal., 2003, 219, 247-257. [44] I. V. Yentekakis, V. Tellou, G. Botzolaki, I. A. Rapakousios, Appl. Catal. B, 2005, 56, 229-239. [45] S. Scirè, C. Crisafulli, R. Maggiore, S. Minicò, S. Galvagno, Appl. Surf. Sci., 1996, 93, 309-316. [46] H. Zhou, B. Han, T. Liu, X. Zhong, G. Zhuang, J. Wang, Green Chem., 2017, 19, 3585-3594. [47] B. Mirkelamoglu, G. Karakas, Appl. Catal. A, 2006, 299, 84-94. [48] T. A. Le, T. W. Kim, S. H. Lee, E. D. Park, Catal. Today, 2018, 303, 159-167. [49] P. Zhai, C. Xu, R. Gao, X. Liu, M. Li, W. Li, X. Fu, C. Jia, J. Xie, M. Zhao, X. Wang, Y.-W. Li, Q. Zhang, X.-D. Wen, D. Ma, Angew. Chem. Int. Ed., 2016, 55, 9902-9907. [50] B. Ghods, F. Meshkani, M. Rezaei, Int. J. Hydrogen Energy, 2016, 41, 22913-22921. [51] M. J. Dees, M. H. B. Bol, V. Ponec, Appl. Catal., 1990, 64, 279-295. [52] H. R. Aduriz, P. Bodnariuk, B. Coq, F. Figueras, J. Catal., 1991, 129, 47-57. [53] G. Kresse, J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50. [54] G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186. [55] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979. [56] G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775. [57] B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B, 1999, 59, 7413-7421. [58] G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904. [59] Y. Guo, S. Zhang, J. Zhu, L. Su, X. Xie, Z. Li, Appl. Surf. Sci., 2017, 416, 358-364. [60] N. S. Babu, N. Lingaiah, R. Gopinath, P. S. Sankar Reddy, P. S. Sai Prasad, J. Phys. Chem. C, 2007, 111, 6447-6453. [61] V. H. Sandoval, C. E. Gigola, Appl. Catal. A, 1996, 148, 81-96. [62] B. Coq, S. Hub, F. Figuéras, D. Tournigant, Appl. Catal. A, 1993, 101, 41-50. [63] P. Chen, L. M. Chew, A. Kostka, M. Muhler, W. Xia, Catal. Sci. Tech-nol., 2013, 3, 1964-1971. [64] J. Zecevic, G. Vanbutsele, K. P. de Jong, J. A. Martens, Nature, 2015, 528, 245. [65] S. Zhang, J. Li, Z. Xia, C. Wu, Z. Zhang, Y. Ma, Y. Qu, Nanoscale, 2017, 9, 3140-3149. [66] M. Guo, H. Li, Y. Ren, X. Ren, Q. Yang, C. Li, ACS Catal., 2018, 8, 6476-6485. [67] H.-B. Cho, J.-C. Lee, Y.-H. Park, Catal. Today, 2006, 111, 417-422. [68] Y. Z. Chen, C. W. Liaw, L. I. Lee, Appl. Catal. A, 1999, 177, 1-8. [69] G. Li, J. Han, H. Wang, X. Zhu, Q. Ge, ACS Catal., 2015, 5, 2009-2016. [70] S. Scirè, C. Crisafulli, R. Maggiore, S. Minicò, S. Galvagno, Appl. Surf. Sci., 1998, 136, 311-320. [71] S. Zhang, C.-R. Chang, Z.-Q. Huang, J. Li, Z. Wu, Y. Ma, Z. Zhang, Y. Wang, Y. Qu, J. Am. Chem. Soc., 2016, 138, 2629-2637. [72] Y. B. Li, C. B. Zhang, H. He, J. H. Zhang, M. Chen, Catal. Sci. Technol., 2016, 6, 2289-2295. [73] Y. B. Lu, J. M. Wang, L. Yu, L. Kovarik, X. W. Zhang, A. S. Hoffman, A. Gallo, S. R. Bare, D. Sokaras, T. Kroll, V. Dagle, H. L. Xin, A. M. Karim, Nat. Catal., 2019, 2, 149-156. |
[1] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[2] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[3] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[4] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[5] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[6] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[7] | Fengwei Zhang, Hefang Guo, Mengmeng Liu, Yang Zhao, Feng Hong, Jingjing Li, Zhengping Dong, Botao Qiao. Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst [J]. Chinese Journal of Catalysis, 2023, 48(5): 195-204. |
[8] | Aitao Li, Qian Wang, Xitong Song, Xiaodong Zhang, Jian-Wen Huang, Chun-Chi Chen, Rey-Ting Guo, Binju Wang, Manfred T. Reetz. Engineering of a P450-based Kemp eliminase with a new mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 191-199. |
[9] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[10] | Dan-Qing Liu, Bingxing Zhang, Guoqiang Zhao, Jian Chen, Hongge Pan, Wenping Sun. Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 93-120. |
[11] | Yan-Wen Ye, Yi-Ming Hu, Wan-Bin Zheng, Ai-Ping Jia, Yu Wang, Ji-Qing Lu. Hydrogenation of crotonaldehyde over ligand-capped Ir catalysts: Metal-organic interface boosts both activity and selectivity [J]. Chinese Journal of Catalysis, 2023, 47(4): 265-277. |
[12] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[13] | Zhipeng Huang, Yang Yang, Junju Mu, Genheng Li, Jianyu Han, Puning Ren, Jian Zhang, Nengchao Luo, Ke-Li Han, Feng Wang. Controlling the reactions of free radicals with metal-radical interaction [J]. Chinese Journal of Catalysis, 2023, 45(2): 120-131. |
[14] | Jianyun Zheng, Yanhong Lyu, Aibin Huang, Bernt Johannessen, Xun Cao, San Ping Jiang, Shuangyin Wang. Deciphering the synergy between electron localization and alloying for photoelectrochemical nitrogen reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 45(2): 141-151. |
[15] | Ziye Zheng, Shuang Tian, Yuxiao Feng, Shan Zhao, Xin Li, Shuguang Wang, Zuoli He. Recent advances of photocatalytic coupling technologies for wastewater treatment [J]. Chinese Journal of Catalysis, 2023, 54(11): 88-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||