Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (10): 1525-1533.DOI: 10.1016/S1872-2067(19)63415-7
• Articles • Previous Articles Next Articles
Shanhong Suia,b, Pengyi Zhanga,b, Huiyu Zhanga,b, Ranran Caoa,b
Received:
2019-04-22
Revised:
2019-05-25
Online:
2019-10-18
Published:
2019-08-26
Supported by:
Shanhong Sui, Pengyi Zhang, Huiyu Zhang, Ranran Cao. Low-temperature catalytic degradation of the odorous pollutant hexanal by γ-MnOOH: The effect of Mn vacancies[J]. Chinese Journal of Catalysis, 2019, 40(10): 1525-1533.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63415-7
[1] C. Zhou, Y. Zhan, S. Chen, M. Xia, C. Ronda, M. Sun, H. Chen, X. Shen, Build. Environ., 2017, 121, 26-34. [2] T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev., 2010, 110, 2536-2572. [3] W. Liang, C. Yang, X. Yang, Build. Environ., 2014, 82, 693-701. [4] R. Kostiainen, Atmos. Environ., 1995, 29, 693-702. [5] S. Cakmak, R. E. Dales, L. Liu, L. M. Kauri, C. L. Lemieux, C. Hebbern, J. Zhu, Environ. Pollut., 2014, 194, 145-151. [6] K. M. Granström, Fuel, 2014, 126, 219-223. [7] K. M. Granström, For. Prod. J., 2010, 60, 27-32. [8] R. Ghadiriasli, M. Wagenstaller, A. Buettner, Anal. Bioanal. Chem., 2018, 410, 6595-6607 [9] C. Jiang, D. Li, P. Zhang, J. Li, J. Wang, J. Yu, Build. Environ., 2017, 117, 118-126. [10] K. Hamaguchi-Hamada, C. Sanbo, S. Hamada, T. Yagi, Neuroscience Res., 2004, 48, 259-267. [11] Y. Cho, M. K. Song, S. C Jeong, K. Lee, Y. Heo, T. S. Kim, J. C. Ryu, Environ. Toxicol., 2016, 31, 1909-1921. [12] M. Yao, Q. Zhang, D.W. Hand, D.L. Perram, R. Taylor, J. Air Waste Manage. Assoc., 2009, 59, 882-890. [13] D. Britt, D. Tranchemontagne, O. M. Yaghi, P. Natl. Acad. Sci. U.S.A., 2008, 105, 11623-11627. [14] T. Wang, S. Chen, H. Wang, Z. Liu, Z. Wu, Chin. J. Catal., 2017, 38, 793-804. [15] H. Ye, Y. Liu, S. Chen, H. Wang, Z. Liu, Z. Wu, Chin. J. Catal., 2019, 40, 681-690. [16] X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Front. Env. Sci. Eng., 2018, 12, 1-32. [17] T. Xu, H. Zheng, P. Zhang, Build. Environ., 2018, 142, 379-387. [18] L. Qi, W. Ho, J. Wang, P. Zhang, J. Yu, Catal. Sci. Technol., 2015, 5, 2366-2377. [19] W. Li, H. Ye, G. Liu, H. Ji, Y. Zhou, K. Han, Chin. J. Catal, 2018, 39, 946-954. [20] X. Yao, Y. Li, Z. Fan, Z. Zhang, M. Chen, W. Shangguan, Ind. Eng. Chem. Res., 2018, 57, 4214-4224. [21] P. Kolar, J.R. Kastner, Chemosphere, 2010, 78, 1110-1115. [22] Y. Li, T. T. Zhang, J. Wang, Z. Zhu, B. Jia, J. Yu, Acta Phys. Chim. Sin., 2016, 32, 2084-2092. [23] D. Xiang, G. Zhao, D. Ye, Sciencepaper Online, 2010, 5, 355-359. [24] C. Chen, T. Liu, H. Wang, Q. Yu, J. Fan, L. Xiao, X. Zheng, Chin. J. Catal., 2012, 33, 941-951. [25] M. Wang, P. Zhang, J. Li, C. Jiang, Chin. J. Catal., 2014, 35, 335-341. [26] J. Ma, C. Wang, H. He, Appl. Catal. B, 2017, 201, 503-510. [27] K. Qi, J. Xie, D. Fang, F. Li, F. He, Chin. J. Catal., 2017, 38, 845-852. [28] J. Wang, J. Li, C. Jiang, P. Zhou, P. Zhang, J. Yu, Appl. Catal. B, 2017, 204, 147-155. [29] K. D. Kwon, K. Refson, G. Sposito, Geochim. Cosmochim. Acta, 2009, 73, 4142-4150. [31] C. Wei, C. Xu, B. Li, D. Nan, J. Ma, F. Kang, Mater. Res. Bull., 2012, 47, 1740-1746. [32] F. Li, J. Wu, Q. Qin, Z. Li, X. Huang, J. Alloys Compd., 2010, 492, 339-346. [33] Y. Cao, Y. Xiao, Y. Gong, C. Wang, F. Li, Electrochim. Acta, 2014, 127, 200-207. [34] C. C. Hu, Y. T. Wu, K. H. Chang, Chem. Mater., 2008, 20, 2890-2894. [35] X. B. Chen, C. Wang, F. M. Ye, Q. Zhu, G. Du, Y. Zhong, X. Peng, J. Z. Jiang, CrystEngComm, 2012, 14, 3142-3148. [36] H. T. Tan, X. Rui, W. Shi, C. Xu, H. Yu, H. E. Hoster, Q. Yan, ChemPlusChem, 2013, 78, 554-560. [37] Y. Li, H. Tan, O. Lebedev, J. Verbeeck, E. Biermans, G. Van Tendeloo, B. L. Su, Cryst. Growth. Des., 2010, 10, 2969-2976. [38] S. Guo, W. Sun, W. Yang, Q. Li, J. K. Shang, RSC Adv., 2015, 5, 53280-53288. [39] L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, J. Electrochem. Soc., 2002, 149, A504. [40] Y. Li, L. D. Liu, L. Liu, Y. Liu, H. W. Zhang, X. Han, J. Mol. Catal. A, 2016, 411, 264-271. [41] X. F. Tang, J. H. Li, J. H. Chen, R. H. Wang, J. M. Hao, Chin. J. Inorg. Chem., 2008, 24, 1468-1473. [42] M. Ramstedt, S. Sjöberg, Aquat Geochem, 2005, 11, 413-431. [43] J. H. Lee, R. Black, G. Popov, E. Pomerantseva, F. Nan, G. A. Botton, L. F. Nazar, Energy Environ. Sci., 2012, 5, 9558-9565. [44] T. Gao, F. Krumeich, R. Nesper, H. Fjellvåg, P. Norby, Inorg. Chem., 2009, 48, 6242-6250. [45] P. F. Smith, B. J. Deibert, S. Kaushik, G. Gardner, S. Hwang, H. Wang, J. F. Al-Sharab, E. Garfunkel, L. Fabris, J. Li, G. C. Dismukes, ACS Catal., 2016, 6, 2089-2099. [46] S. Rong, P. Zhang, F. Liu, Y. Yang, ACS Catal., 2018, 8, 435-3446. [47] M. Ramstedt, A.V. Shchukarev, S. Sjöberg, Surf. Interface. Anal., 2002, 34, 632-636. [48] D. Chen, D. He, J. Lu, L. Zhong, F. Liu, J. Liu, J. Yu, G. Wan, S. He, Y. Luo, Appl. Catal. B, 2017, 218, 249-259. [49] Y. Yang, J. Huang, S. Wang, S. Deng, B. Wang, G. Yu, Appl. Catal. B, 2013, 142-143, 568-578. [50] S. U. Kim, Y. Liu, K. M. Nash, J. L. Zweier, A. Rockenbauer, F. A. Villamena, J. Am. Chem. Soc., 2010, 132, 17157-17173. [51] Y. Takanami, T. Nakayama, Biosci. Biotechnol. Biochem., 2011, 75, 34-39. [52] S. J. Liu, F. T. Li, Y. L. Li, Y. J. Hao, X. J. Wang, B. Li, R. H. Liu, Appl. Catal. B, 2017, 212, 115-128. [53] N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Zhu, L. Song, J. Jiang, Y. Xiong, J. Am. Chem. Soc., 2016, 138, 8928-8935. [54] H. D. Lutz, Struct. Bond., 1988, 69, 97-125. [55] L. Zhu, J. Wang, S. Rong, H. Wang, P. Zhang, Appl. Catal. B, 2017, 211, 212-221. |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[4] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[5] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[6] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[7] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[8] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[9] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[10] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[11] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[12] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[13] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[14] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[15] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||