Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (10): 1557-1565.DOI: 10.1016/S1872-2067(19)63416-9
• Articles • Previous Articles Next Articles
Hao Wanga, Xiaohao Liua, Guangyue Xua, Ziwei Guoa, Ying Zhanga,b
Received:
2019-04-28
Revised:
2019-05-27
Online:
2019-10-18
Published:
2019-08-26
Supported by:
Hao Wang, Xiaohao Liu, Guangyue Xu, Ziwei Guo, Ying Zhang. In situ synthesis of Fe-N-C catalysts from cellulose for hydrogenation of nitrobenzene to aniline[J]. Chinese Journal of Catalysis, 2019, 40(10): 1557-1565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63416-9
[1] A. Corma, P. Serna, Science, 2006, 5785, 332-334. [2] F. Meemken, A. Baiker, Chem. Rev., 2017, 117, 11522-11569. [3] W. Zang, G. Li, L. Wang, X. Zhang, Catal. Sci. Technol., 2015, 5, 2532-2553. [4] F. Yao, Y. Huo, Y. Ma, Chin. J. Chem. Phys., 2017, 30, 559-565. [5] X. Tong, F. Yang, J. Ren, J. Cai, N. Lu, X. Jiang, Chin. J. Inorg. Chem., 2018, 34, 129-134. [6] J. G. Chen, Chem. Rev., 1996, 96, 1477-1498. [7] P. D. Tran, A. Morozan, S. Archambault, J. Heidkamp, P. Chen-evier, H. Dau, M. Fontecave, A. Martinent, B. Jousselme, V. Artero, Chem. Sci., 2015, 6, 2050-2053. [8] Y. Ren, H. Wei, G. Yin, L. Zhang, A. Wang, T. Zhang, Chem.Commun., 2017, 53, 1969-1972. [9] J. Sun, Q. Cai, Y. Wan, S. Wan, L. Wang, J. Lin, D. Mei, Y. Wang, ACS Catal., 2016, 6, 5771-5785. [10] S. Enthaler, K. Junge, M. Beller, Angew. Chem. Int. Ed., 2008, 47, 3317-3321. [11] R. Schlögl, Angew. Chem. Int. Ed., 2003, 42, 2004-2008. [12] M. A. Vannice, J. Catal., 1977, 50, 228-236. [13] F. Liu, K. Asakura, H. He, W. Shan, X. Shi, C. Zhang, Appl. Catal. B, 2011, 103, 369-377. [14] L. Lin, Z. K. Yang, Y. F. Jiang, A. W. Xu, ACS Catal., 2016, 6, 4449-4454. [15] Y.-C. Wang, Y.-J. Lai, L. Song, Z.-Y. Zhou, J.-G. Liu, Q. Wang, X.-D. Yang, C. Chen, W. Shi, Y.-P. Zheng, M. Rauf, S.-G. Sun, Angew. Chem., Int. Ed., 2015, 54, 9907-9910. [16] G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science, 2011, 332, 443-447. [17] Y. Zhao, K. Watanabe, K. Hashimoto, J. Am. Chem. Soc., 2012, 134, 19528-19531. [18] M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science, 2009, 324, 71-74. [19] T. N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen, M. Fontecave, ACS Catal., 2017, 7, 1520-1525. [20] M. Zeng, Y. Liu, F. Zhao, K. Nie, N. Han, X. Wang, W. Huang, X. Song, J. Zhong, Y. Li, Adv. Funct. Mater., 2016, 26, 4397-4404. [21] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694. [22] H. W. Liang, S. Bruller, R. Dong, J. Zhang, X. Feng, K. Mullen, Nat. Commun., 2015, 6, 7992. [23] H. Fei, J. Dong, M. J. Arellano-Jimenez, G. Ye, N. D. Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Nat. Commun., 2015, 6, 8668. [24] Y. L. Wang, M. J. Wang, J. Li, Z. D. Wei, Chin. Chem. Lett., 2019, 77, 84-89. [25] R. V. Jagadeesh, A. E., Surkus, H. Junge, M. M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schunemann, A. Bruckner, M. Beller, Science, 2013, 342, 1073-1076. [26] R. V. Jagadeesh, T. Stemmler, A.-E. Surkus, M. Bauer, M.-M Pohl, J. Radnik, K. Junge, H. Junge, A. Brückner, M. Beller, Nat. Protoc., 2015, 10, 916-926. [27] F. A. Westerhaus, R. V. Jagadeesh, G. Wienhofer, M. M. Pohl, J. Radnik, A. E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Bruckner, M. Beller, Nat. Chem., 2013, 5, 537-543. [28] D. Deng, X. Chen, L. Yu, X. Wu, Q. Liu, Y. Liu, H. Yang, H. Tian, Y. Hu, P. Du, R. Si, J. Wang, X. Cui, H. Li, J. Xiao, T. Xu, J. Deng, F. Yang, P. N. Duchesne, P. Zhang, J. Zhou, L. Sun, J. Li, X. Pan, X. Bao, Sci. Adv., 2015, 1, e1500462/1-e1500462/9. [29] L. Zhang, A. Wang, W. Wang, Y. Huang, X. Liu, S. Miao, J. Liu, T. Zhang, ACS Catal., 2015, 5, 6563-6572. [30] W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao W. Wang, A. Wang, T. Zhang, J. Am. Chem. Soc., 2017, 139, 10790-10798. [31] J. Li, J. Liu, H. Zhou, Y. Fu, ChemSusChem, 2016, 9, 1339-1347. [32] J. Li, J. Liu, H. Liu, G. Xu, J. Zhang, J. Liu, G. Zhou, Q. Li, Z. Xu, Y. Fu, ChemSusChem, 2017, 10, 1436-1447. [33] W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, J. Am. Chem. Soc., 2015, 137, 5555-5562. [34] F.-L. Meng, Z.-L. Wang, H.-X. Zhong, J. Wang, J.-M. Yan, X.-B. Zhang, Adv. Mater., 2016, 28, 7948-7955. [35] E. Negro, A. H. A. M. Videla, V. Baglio, A. S. Aricò, S. Specchia, G. J. M. Kopera, Appl. Catal. B, 2015, 166, 75-83. [36] S. Yasuda, A. Furuya, Y. Uchibori, J. Kim, K. Murakoshi, Adv. Funct. Mater., 2016, 26, 738-744. [37] Z. Wang, D. Xu, H. Zhong, J. Wang, F. L. Meng, X. B. Zhang, Sci. Adv., 2015, 1, e1400035/1-e1400035/9. [38] W. Zhong, J. Chen, P. Zhang, L. Deng, L. Yao, X. Ren, Y. Li, H. Mi, L. Sun, J. Mater. Chem. A, 2017, 5, 16605-16610. [39] X. Wang, B. Wang, J. Zhong, F. Zhao, N. Han, W. Huang, M. Zeng, J. Fan, Y. Li, Nano Res., 2016, 9, 1497-1506. [40] A. H. A. Monteverde Videla, S. Ban, S. Specchia, L. Zhang, J. Zhang, Carbon, 2014, 76, 386-400. [41] R. J. Jasinski, Nature, 1964, 201, 1212-1213. [42] L. Lin, Q. Zhu, A. Xu, J. Am. Chem. Soc., 2014, 136, 11027-11033. [43] Z. Li, G. Li, L. Jiang, J. Li, G. Sun, C. Xia, F. Li, Angew. Chem. Int. Ed., 2015, 54, 1494-1498. [44] H. A. Miller, M. Bellini, W. Oberhauser, Phys. Chem. Chem. Phys., 2016, 18, 33142-33151. [45] H. T. Chung, J. H. Won, P. Zelenay, Nat. Commun., 2013, 4, 1922-1926. [46] M. Rauf, R. Chen, Q. Wang, Carbon, 2017, 125, 605-613. [47] H. U. Blaser, Science, 2006, 313, 312-313. [48] C. Li, Z. Yu, K. Yao, S. Ji, J. Liang, J. Mol. Catal. A, 2005, 226, 101-105. [49] R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen, Z. Hou, Carbon, 2012, 50, 586-596. [50] J. Liang, X. Zhang, L. Jing, H. Yang, Chin. J. Catal., 2017, 38, 1252-1260. [51] E. A. Gelder, S. D. Jackson, C. M. Lok, Catal. Lett., 2002, 84, 205-208. [52] B. Zuo, Y. Wang, Q. Wang, J. Zhang, N. Wu, L. Peng, L. Gui, X. Wang, R. Wang, D. Yu, J. Catal., 2004, 222, 493-498. [53] A. Corma, P. Concepci, P. Serna, Angew. Chem. Int. Ed., 2007, 46, 7266-7269. [54] Z. Peng, H. Wang, L. Zhou, Y. Wang, J. Gao, G. Liu, S. A. T. Redfern, X. Feng, S. Lu, B. Li, Z. Liu, J. Mater. Chem. A, 2019, 7, 6676-6685. [55] Z. Peng, W. Li, Y. Miao, S. Chen, G. Liu, S. Liu, J. Gao, B. Li, Z. Liu, ACS Appl. Energy Mater., 2018, 1, 8, 4277-4284. [56] R. V. Jagadeesh, A. E. Surkus, H. Junge, M. M. Pohl, J. Radnik, J. Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science, 2003, 342, 1073-1076. [57] L. Xu, Q. Yao, Y. Zhang, Y. Fu, ACS Sustainable Chem. Eng., 2017, 5, 2960-2969. [58] L. Xu, Z. Han, Y. Zhang, Y. Fu, RSC Adv., 2016, 6, 108217-108228. [59] X. Liu, L. Xu, G. Xu, W. Jia, Y. Ma, Y. Zhang, ACS Catal., 2016, 6, 7611-7620. [60] J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, Carbon, 1995, 33, 1641-1653. [61] D. Guo, R. Shibuya, C. Akida, S. Saji, T. Kondo, J. Nakamura, Science, 2016, 351, 31-365. [62] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, J. Mater. Chem., 2011, 21, 14398-14401. [63] X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li, Y. Wang, J. Am. Chem. Soc., 2012, 134, 16987-16990. [64] M. Xiao, J. Zhu, L. Feng, C. Liu, W. Xing, Adv. Mater., 2015, 27, 2521-2527. [65] W. J. Liu, K. Tian, H. Jiang, Green Chem., 2015, 17, 821-826. [66] N. S. Abo-Ghander, J. R. Grace, S. S. E. H. Elnashaie, C. J. Lim, Chem. Eng. Sci., 2001, 63, 1817-1826. |
[1] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[2] | Mingjia Lu, Lecheng Liang, Binbin Feng, Yiwen Chang, Zhihong Huang, Huiyu Song, Li Du, Shijun Liao, Zhiming Cui. Ultrafast carbothermal shock strategy enabled highly graphitic porous carbon supports for fuel cells [J]. Chinese Journal of Catalysis, 2023, 52(9): 228-238. |
[3] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[4] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[5] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[6] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[7] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[8] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[9] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[10] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[11] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[12] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[13] | Lili Zhang, Yuhang Li, Zhenyu Guo, Yantao Li, Nian Li, Weipeng Li, Chengjian Zhu, Jin Xie. Photoredox deoxygenative allylation of carboxylic acids via selective 1,6-addition of acyl radicals to electron-deficient 1,3-dienes [J]. Chinese Journal of Catalysis, 2023, 50(7): 215-221. |
[14] | Keshia Saradima Indriadi, Peijie Han, Shipeng Ding, Bingqing Yao, Shinya Furukawa, Qian He, Ning Yan. Highly dispersed Pt boosts active FexN formation in ammonia decomposition [J]. Chinese Journal of Catalysis, 2023, 50(7): 297-305. |
[15] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||