Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (10): 1576-1584.DOI: 10.1016/S1872-2067(19)63414-5
• Articles • Previous Articles
Xiaoli Li, Wenming Xue, Rong Mo, Sui Yang, Hongxing Li, Jianxin Zhong
Received:
2019-04-28
Revised:
2019-05-30
Online:
2019-10-18
Published:
2019-08-26
Supported by:
Xiaoli Li, Wenming Xue, Rong Mo, Sui Yang, Hongxing Li, Jianxin Zhong. In situ growth of minimal Ir-incorporated CoxNi1-xO nanowire arrays on Ni foam with improved electrocatalytic activity for overall water splitting[J]. Chinese Journal of Catalysis, 2019, 40(10): 1576-1584.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63414-5
[1] X. Zou, Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148-5180. [2] S. J. Deng, Y. Zhong, Y. X. Zeng, Y. D. Wang, X. L. Wang, X. H. Lu, X. H. Xia, J. P. Tu, Adv. Sci., 2018, 5, 1700772. [3] R. Mo, S. Wang, H. X. Li, J. Li, S. Yang, J. X. Zhong, Electrochim. Acta, 2018, 290, 649-656. [4] J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, X. Sun, Adv. Mater., 2016, 28, 215-230. [5] R. Mo, J. Li, Y. H. Tang, H. X. Li, J. X Zhong, Appl. Surf. Sci., 2019, 476, 552-559. [6] Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao, S. Wang, Angew. Chem. Int. Ed., 2017, 56, 5867-5871. [7] P. C. K. Vesborg, B. Seger, I. Chorkendorff, J. Phys. Chem. Lett., 2015, 6, 951-957. [8] E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T. J. Schmidt, Catal. Sci. Technol., 2014, 4, 3800-3821. [9] Y. Shi, B. Zhang, Chem. Soc. Rev., 2016, 45, 1529-1541. [10] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 3, 399-404. [11] T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges, K. B. Kokoh, J. Phys. Chem. C, 2016, 120, 2562-2573. [12] W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu, S. Chen, J. Mater. Chem. A, 2014, 2, 11358-11364. [13] J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu, P. Xi, Na-noscale, 2016, 8, 1390-1400. [14] W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Chem. Commun., 2016, 52, 1486-1489. [15] J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 1678-1689. [16] L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed., 2016, 55, 5277-5281. [17] X. Yan, L. Tian, X. Chen, J. Power Sources, 2015, 300, 336-343. [18] W. Yan, Z. Yang, W. Bian, R. Yang, Carbon, 2015, 92, 74-83. [19] K. L. Yan, J. Q. Chi, Z. Z. Liu, B. Dong, S. S. Lu, X. Shang, W. K. Gao, Y. M. Chai, C. G. Liu, Inorg. Chem. Front., 2017, 4, 1783-1790. [20] W. Zhu, L. Liu, Z. Yue, W. Zhang, X. Yue, J. Wang, S. Yu, L. Wang, J. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 19807-19814. [21] Y. Gong, Z. Xu, H. Pan, Y. Lin, Z. Yang, X. Du, J. Mater. Chem. A, 2018, 6, 5098-5106. [22] L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci., 2017, 10, 1820-1827. [23] H. Zhang, L. Yu, T. Chen, W. Zhou, X. W. Lou, Adv. Funct. Mater., 2018, 28, 1807086. [24] G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186. [25] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868. [26] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc., 2005, 152, J23-J26. [27] B. Liu, Y. F. Zhao, H. Q. Peng, Z. Y. Zhang, C. K. Sit, M. F. Yuen, T. R. Zhang, C. S. Lee, W. J. Zhang, Adv. Mater., 2017, 29, 1606521. [28] Y. Wang, X. Liu, J. Liu, M. Al-Mamun, A. W. C. Liew, H. Yin, W. Wen, Y. L. Zhong, P. Liu, H. Zhao, ACS Appl. Energy Mater., 2018, 1, 1688-1694. [29] Y. Y. Ma, C. X. Wu, X. J. Feng, H. Q. Tan, L. K. Yan, Y. Liu, Z. H. Kang, E. B. Wang, Y. G. Li, Energy Environ. Sci., 2017, 10, 788-798. [30] X. Tong, X. Xia, C. Guo, Y. Zhang, J. Tu, H. J. Fan, X. Y. Guo, J. Mater. Chem. A, 2015, 3, 18372-18379. [31] Q. Fu, T. Wu, G. Fu, T. Gao, J. Han, T. Yao, Y. Zhang, W. Zhong, X. Wang, B. Song, ACS Energy Lett., 2018, 3, 1744-1752. [32] T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931. [33] X. Duan, Y. Yang, C. Liu, M. Zhou, L. Yang, H. He, Y. Zhang, P. Xiao, Appl. Surf. Sci., 2017, 407, 177-184. [34] G. Liu, J. Liu, B. Liu, C. Yang, D. Qian, J. Li, Int. J. Hydrogen Energy, 2018, 43, 22942-22948. [35] Y. Zhu, H. Huang, G. Li, X. Liang, W. Zhou, J. Guo, W. Wei, S. Tang, Electrochim. Acta, 2017, 248, 562-569. [36] J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, ACS Appl. Mater. Interfaces, 2017, 9, 464-471. [37] X. Yu, M. Zhang, W. Yuan, G. Shi, J. Mater. Chem. A, 2015, 3, 6921-6928. [38] Q. Q. Chen, C. C. Hou, C. J. Wang, X. Yang, R. Shi, Y. Chen, Chem. Commun., 2018, 54, 6400-6403. [39] M. Cheng, S. Duan, H. Fan, X. Su, Y. Cui, R. Wang, Chem. Eng. J., 2017, 327, 100-108. [40] X. Yan, K. X. Li, L. Lyu, F. Song, J. He, D. Niu, L. Liu, X. Hu, X. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 3208-3214. [41] L. Fu, F. Yang, G. Cheng, W. Luo, Nanoscale, 2018, 10, 1892-1897. [42] C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. Feng, S. T. Pennycook, J. Wang, Nano Energy, 2018, 48, 73-80. [43] J. Feg, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.C. Wang, S. Guo, Adv. Mater., 2017, 29, 1703798. [44] Y. Zhao, J. Zhang, W. Wu, X. Guo, P. Xiong, H. Liu, G. Wang, Nano Energy, 2018, 54, 129-137. [45] X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, J. Am. Chem. Soc., 2015, 137, 11900-11903. [46] X. Zhang, L. Huang, Q. Wang, S. Dong, J. Mater. Chem. A, 2017, 5, 18839-18844. [47] Y. Zhou, M. Luo, Z. Zhang, W. Li, X. Shen, W. Xia, M. Zhou, X. Zeng, Appl. Surf. Sci., 2018, 448, 9-15. [48] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem., 2010, 2, 724-761. [49] J. Wang, S. Mao, Z. Liu, Z. Wei, H. Wang, Y. Chen, Y. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 7139-7147. [50] T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W. B. Hu, X. W. Du, K. Davey, S. Z. Qiao, Adv. Mater., 2019, 31, 1807771. [51] I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem., 2011, 3, 1159-1165. [52] N. Lu, W. Zhang, X. Wu, Chin. J. Chem. Phys., 2017, 30, 553-558. [53] J. Li, Q. Zhuang, P. Xu, D. Zhang, L.Wei, D.Yuan, Chin. J. Catal., 2018, 39, 1403-1410. [54] R. Xiang, C. Tong, Y. Wang, L. Peng, Y. Nie, L. Li, X. Huang, Z. Wei, Chin. J. Catal., 2018, 39, 1736-1745. |
[1] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[2] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[3] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[4] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[5] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[6] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[7] | Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 117-126. |
[8] | Zhidong Wei, Jiawei Yan, Weiqi Guo, Wenfeng Shangguan. Nanoscale lamination effect by nitrogen-deficient polymeric carbon nitride growth on polyhedral SrTiO3 for photocatalytic overall water splitting: Synergy mechanism of internal electrical field modulation [J]. Chinese Journal of Catalysis, 2023, 48(5): 279-289. |
[9] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[10] | Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery [J]. Chinese Journal of Catalysis, 2023, 46(3): 36-47. |
[11] | Dan Zhang, Yue Shi, Xilei Chen, Jianping Lai, Bolong Huang, Lei Wang. High-entropy alloy metallene for highly efficient overall water splitting in acidic media [J]. Chinese Journal of Catalysis, 2023, 45(2): 174-183. |
[12] | Xiaoni Liu, Xiaobin Liu, Caixia Li, Bo Yang, Lei Wang. Defect engineering of electrocatalysts for metal-based battery [J]. Chinese Journal of Catalysis, 2023, 45(2): 27-87. |
[13] | Xiaoning Li, Chongyan Hao, Yumeng Du, Yun Lu, Yameng Fan, Mingyue Wang, Nana Wang, Ruijin Meng, Xiaolin Wang, Zhichuan J. Xu, Zhenxiang Cheng. Harnessing magnetic fields to accelerate oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 55(12): 191-199. |
[14] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[15] | Ningning Wang, Shuo Wang, Can Li, Chenyang Li, Chunjiang Liu, Shanshan Chen, Fuxiang Zhang. ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2023, 54(11): 220-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||