Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (11): 1655-1667.DOI: 10.1016/S1872-2067(19)63357-7
• Reviews • Previous Articles Next Articles
Xia Li, Günther Rupprechter
Received:
2019-01-29
Revised:
2019-03-18
Online:
2019-11-18
Published:
2019-09-06
Contact:
Günther Rupprechter
Supported by:
Xia Li, Günther Rupprechter. A modeling analysis of molecular orientation at interfaces by polarization-dependent sum frequency generation vibrational spectroscopy[J]. Chinese Journal of Catalysis, 2019, 40(11): 1655-1667.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63357-7
[1] P. A. Redhead, Vacuum, 1962, 12, 203-211. [2] G. Rupprechter, Adv. Catal., 2007, 51, 133-263. [3] Y. R. Shen, Nature, 1989, 337, 519-525. [4] G. A. Somorjai, G. Rupprechter, J. Phys. Chem. B, 1999, 103, 1623-1638. [5] G. A. Somorjai, G. Rupprechter, J. Chem. Educ., 1998, 75, 162-176. [6] G. A. Somorjai, Y. M. Li, Introduction to Surface Science Chemistry and Catalysis, Wiley, New York, 1994. [7] G. Rupprechter, G. A. Somorjai, in:H. P. Bonzel (Ed.), Adsorbed Layers on surfaces. Part 5:Adsorption of molecules on metal, semiconductor and oxide surfaces, Landolt-Börnstein-Group Ⅲ Condensed Matter, Springer, Berlin, 2006, 243-330. [8] F. Esch, T. Greber, S. Kennou, A. Siokou, S. Ladas, R. Imbihl, Catal. Lett., 1996, 38, 165-170. [9] S. Baldelli, N. Markovic, P. Ross, Y. R. Shen, G. Somorjai, J. Phys. Chem. B, 1999, 103, 8920-8925. [10] P. Galletto, H. Unterhalt, G. Rupprechter, Chem. Phys. Lett., 2003, 367, 785-790. [11] X. Li, M. Roiaz, V. Pramhaas, C. Rameshan, G. Rupprechter, Top. Catal., 2018, 61, 751-762. [12] A. Bandara, S. Dobashi, J. Kubota, K. Onda, A. Wada, K. Domen, C. Hirose, S. S. Kano, Surf Sci, 1997, 387, 312-319. [13] R. Kissel-Osterrieder, F. Behrendt, J. Warnatz, U. Metka, H. R. Volpp, J. Wolfrum, P. Combust. Inst., 2000, 28, 1341-1348. [14] U. Metka, M. G. Schweitzer, H. R. Volpp, J. Wolfrum, J. Warnatz, Z. Phys. Chem., 2000, 214, 865-888. [15] S. Baldelli, A. S. Eppler, E. Anderson, Y. R. Shen, G. A. Somorjai, J. Chem. Phys., 2000, 113, 5432-5438. [16] S. Liu, A. A. Liu, B. Wen, R. D. Zhang, C. Y. Zhou, L. M. Liu, Z. F. Ren, J. Phys. Chem. Lett., 2015, 6, 3327-3334. [17] R. R. Feng, A. A. Liu, S. Liu, J. J. Shi, R. D. Zhang, Z. F. Ren, J. Phys. Chem. C, 2015, 119, 9798-9804. [18] A. Bandara, J. Kubota, A. Wada, K. Domen, C. Hirose, Appl. Phys. B, 1999, 68, 573-578. [19] C. Hirose, A. Bandara, S. Katano, J. Kubota, A. Wada, K. Domen, Appl. Phys. B, 1999, 68, 559-565. [20] C. L. Anfuso, D. Q. Xiao, A. M. Ricks, C. F. A. Negre, V. S. Batista, T. Q. Lian, J. Phys. Chem. C, 2012, 116, 24107-24114. [21] Z. G. Li, J. X. Wang, Y. M. Li, W. Xiong, J. Phys. Chem. C, 2016, 120, 20239-20246. [22] R. R. Feng, Y. Guo, H. F. Wang, J. Chem. Phys., 2014, 141, 18C507. [23] C. S. Tian, S. J. Byrnes, H. L. Han, Y. R. Shen, J. Phys. Chem. Lett., 2011, 2, 1946-1949. [24] W. Hua, A. M. Jubb, H. C. Allen, J. Phys. Chem. Lett., 2011, 2, 2515-2520. [25] X. Li, G. H. Deng, R. J. Feng, K. Lin, Z. Zhang, Y. Bai, Z. Lu, Y. Guo, Chin. Chem. Lett., 2016, 27, 535-539. [26] F. Schulze-Zachau, S. Bachmann, B. Braunschweig, Langmuir, 2018, 34, 11714-11722. [27] P. Yang, A. Ramamoorthy, Z. Chen, Langmuir, 2011, 27, 7760-7767. [28] F. Wei, S. J. Ye, H. C. Li, Y. Luo, J. Phys. Chem. C, 2013, 117, 11095-11103. [29] S. J. Ye, F. Wei, H. C. Li, K. Z. Tian, Y. Luo, Adv. Protein Chem. Str., 2013, 93, 213-255. [30] M. E. Richert, N. Garcia. Rey, B. Braunschweig, J. Phys. Chem. B, 2018, 122, 10377-10383. [31] P. P. Hu, X. X. Zhang, Y. X. Li, C. Pichan, Z. Chen, Top. Catal., 2018, 61, 1148-1162. [32] M. Xu, R. Spinney, H. C. Allen, J. Phys. Chem. B, 2009, 113, 4102-4110. [33] X. F. Han, C. Leng, Q. Shao, S. Y. Jiang, Z. Chen, Langmuir, 2019, 35, 1327-1334. [34] C. Leng, H. Huang, K. X. Zhang, H. C. Hung, Y. Xu, Y. X. Li, S. Y. Jiang, Z. Chen, Langmuir, 2018, 34, 6538-6545. [35] S. Strazdaite, J. Versluis, N. Ottosson, H. J. Bakker, J. Phys. Chem. C, 2017, 121, 23398-23405. [36] I. Chae, S. Ahmed, H. Ben Atitallah, J. W. Luo, Q. Wang, Z. Ounaies, S. H. Kim, Macromolecules, 2017, 50, 2838-2844. [37] C. Zhang, Appl. Spectrosc., 2017, 71, 1717-1749. [38] P. Hu, B. Li, C. Bai, X. Li, X. Lu, Anal. Chem., 2018, 90, 14222-14229. [39] H. Wu, P. J. Ren, P. Zhao, Z. M. Gong, X. D. Wen, Y. Cui, Q. Fu, X. H. Bao, Nano. Res., 2019, 12, 85-90. [40] X. Wei, S. C. Hong, X. W. Zhuang, T. Goto, Y. R. Shen, Phys. Rev. E, 2000, 62, 5160-5172. [41] X. Zhuang, P. B. Miranda, D. Kim, Y. R. Shen, Phys. Rev. B, 1999, 59, 12632-12640. [42] H. F. Wang, W. Gan, R. Lu, Y. Rao, B. H. Wu, Int.Rev. Phys. Chem., 2005, 24, 191-256. [43] C. Hirose, N. Akamatsu, K. Domen, J. Chem. Phys., 1992, 96, 997-1004. [44] C. Hirose, H. Yamamoto, N. Akamatsu, K. Domen, J. Phys. Chem., 1993, 97, 10064-10069. [45] Ekspla. SFG spectrometer, in Ekspla Com (Lithuania), SFG Spec-trometer Handbooks (PL2241 and PG501/DFG). [46] G. Rupprechter, Phys. Chem. Chem. Phys., 2001, 3, 4621-4632. [47] K. Y. Kung, P. Chen, F. Wei, G. Rupprechter, Y. R. Shen, G. A. Somorjai, Rev. Sci. Instrum., 2001, 72, 1806-1809. [48] M. Roiaz, V. Pramhaas, X. Li, C. Rameshan, G. Rupprechter, Rev. Sci. Instrum., 2018, 89, 045104/1-045104/10. [49] W. Hua, D. Verreault, E. M. Adams, Z. S. Huang, H. C. Allen, J. Phys. Chem. C, 2013, 117, 19577-19585. [50] G. H. Deng, Y. Q. Guo, X. Li, Z. Zhang, S. L. Liu, Z. Lu, Y. Guo, Sci. China Chem., 2015, 58, 439-447. [51] G. H. Deng, X. Li, S. L. Liu, Z. Zhang, Z. Lu, Y. Guo, J. Phys. Chem. C, 2016, 120, 12032-12041. [52] A. Ouvrard, J. J. Wang, A. Ghalgaoui, S. Nave, S. Carrez, W. Q. Zheng, H. Dubost, B. Bourguignon, J. Phys. Chem. C, 2014, 118, 19688-19700. [53] X. Li, M. Roiaz, V. Pramhaas, C. Rameshan, G. Rupprechter, Top. Catal., 2018, 61, 751-762. [54] M. Yang, G. A. Somorjai, J. Phys. Chem. B, 2004, 108, 4405-4410. [55] A. Ouvrard, A. Ghalgaoui, C. Michel, C. Barth, J. J. Wang, S. Carrez, W. Q. Zheng, C. R. Henry, B. Bourguignon, J. Phys. Chem. C, 2017, 121, 5551-5564. [56] A. Ghalgaoui, A. Ouvrard, J. J. Wang, S. Carrez, W. Q. Zheng, B. Bourguignon, J. Phys. Chem. Lett., 2017, 8, 2666-2671. [57] T. Dellwig, J. Hartmann, J. Libuda, I. Meusel, G. Rupprechter, H. Unterhalt, H.-J. Freund, J. Mol. Catal. A, 2000, 162, 51-66. [58] I. V. Yudanov, R. Sahnoun, K. M. Neyman, N. Rösch, J. Hoffmann, S. Schauermann, V. Johanek, H. Unterhalt, G. Rupprechter, J. Libuda, H.-J. Freund, J. Phys. Chem. B, 2003, 107, 255-264. [59] N. Podda, M. Corva, F. Mohamed, Z. J. Feng, C. Dri, F. Dvorak, V. Matolin, G. Comelli, M. Peressi, E. Vesselli, ACS Nano., 2017, 11, 1041-1053. [60] M. Corva, A. Ferrari, M. Rinaldi, Z. Feng, M. Roiaz, C. Rameshan, G. Rupprechter, R. Costantini, M. Dell'Angela, G. Pastore, G. Comelli, N. Seriani, E. Vesselli, Nat. Commun., 2018, 9. [61] F. M. Hoffmann, Surf. Sci. Rep., 1983, 3, 107-192. [62] K. C. Jena, P. A. Covert, D. K. Hore, J. Phys. Chem. Lett., 2011, 2, 1056-1061. [63] V. V. Kaichev, M. Morkel, H. Unterhalt, I. P. Prosvirin, V. I. Bu-khtiyarov, G. Rupprechter, H.-J. Freund, Surf. Sci., 2004, 566-568, 1024-1029. [64] O. Rodriguez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter, H.-J. Freund, Surf. Sci., 2004, 566, 740-745. [65] G. Rupprechter, H. Unterhalt, M. Morkel, P. Galletto, L. J. Hu, H.-J. Freund, Surf. Sci., 2002, 502, 109-122. [66] M. Morkel, H. Unterhalt, T. Klüner, G. Rupprechter, H.-J. Freund, Surf Sci., 2005, 586, 146-156. [67] T. T. Cui, J. H. Dong, X. L. Pan, T. Yu, Q. Fu, X. H. Bao, J. Energy Chem., 2019, 28, 123-127. [68] X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, X. H. Bao, Nat. Mater., 2007, 6, 507-511. [69] X. Y. Shi, S. H. Zheng, Z. S. Wu, X. H. Bao, J. Energy Chem., 2018, 27, 25-42. [70] R. T. Mu, Q. Fu, L. Jin, L. Yu, G. Z. Fang, D. L. Tan, X. H. Bao, Angew. Chem. Int. Ed., 2012, 51, 4856-4859. [71] A. M. Motin, T. Haunold, A. V. Bukhtiyarov, A. Bera, C. Rameshan, G. Rupprechter, Appl. Surf. Sci., 2018, 440, 680-687. [72] M. Kettner, C. Stumm, M. Schwarz, C. Schuschke, J. Libuda, Surf. Sci., 2019, 679, 64-73. [73] R. Superfine, J. Y. Huang, Y. R. Shen, Phys. Rev. Lett., 1991, 66, 1066-1069. [74] K. Wolfrum, H. Graener, A. Laubereau, Chem. Phys. Lett., 1993, 213, 41-46. [75] H. Chen, W. Gan, R. Lu, Y. Guo, H.F. Wang, J. Phys. Chem. B, 2005, 109, 8064-8075. [76] G. Ma, H.C. Allen, J. Phys. Chem. B, 2003, 107, 6343-6349. [77] J. Y. Huang, M. H. Wu, Phys. Rev. E, 1994, 50, 3737-3746. [78] L. X. Dang, J. Phys. Chem. A, 2004, 108, 9014-9017. [79] X.Q. Sun, C.D. Wick, L.X. Dang, J. Phys. Chem. A, 2011, 115, 5767-5773. [80] T. M. Chang, L. X. Dang, J. Phys. Chem. B, 2005, 109, 5759-5765. [81] T. Ishihara, T. Ishiyama, A. Morita, J. Phys. Chem. C, 2015, 119, 9879-9889. [82] Q. Du, R. Superfine, E. Freysz, Y.R. Shen, Phys. Rev. Lett., 1993, 70, 2313-2316. [83] W. Hua, D. Verreault, H. C. Allen, J. Phys. Chem. C, 2014, 118, 24941-24949. [84] P. A. Covert, K. C. Jena, D. K. Hore, J. Phys. Chem. Lett., 2014, 5, 143-148. [85] Z. Yang, A. K. Bertram, K. C. Chou, J. Phys. Chem. Lett., 2011, 2, 1232-1236. [86] Y. R. Shen, V. Ostroverkhov, Chem. Rev., 2006, 106, 1140-1154. [87] M. J. Shultz, S. Baldelli, C. Schnitzer, D. Simonelli, J. Phys. Chem. B, 2002, 106, 5313-5324. [88] D. S. Walker, G. L. Richmond, J. Phys. Chem. C, 2007, 111, 8321-8330. [89] L. M. Levering, M. R. Sierra-Hernández, H. C. Allen, J. Phys. Chem. C, 2007, 111, 8814-8826. [90] X. Li, R. J. Feng, J. J. Wang, Z. Zhang, Z. Lu, Y. Guo, Chin. Chem. Lett., 2015, 26, 1542-1546. [91] J. Wang, X. Y. Chen, M. L. Clarke, Z. Chen, P. Natl. Acad. Sci., 2005, 102, 4978-4983. [92] X. L. Lu, N. Shephard, J. L. Han, G. Xue, Z. Chen, Macromolecules, 2008, 41, 8770-8777. [93] J. Wang, M. L. Clarke, Z. Chen, Anal. Chem., 2004, 76, 2159-2167. [94] R. L. York, Y. M. Li, G. J. Holinga, G. A. Somorjai, J. Phys. Chem. A, 2009, 113, 2768-2774. [95] A. D. Rakic, A. B. Djurisic, J. M. Elazar, M. L. Majewski, Appl. Opt., 1998, 37, 5271-5283. [96] G. M. Hale, M. R. Querry, Appl. Opt., 1973, 12, 555-563. [97] A. V. Wolf, Aqueous solutions and body fluids; their concentrative properties and conversion tables, Hoeber Medical Division, Harper & Row, New York, 1966. [98] D. J. Segelstein, M S, University of Missouri-Kansas City, Kan-sas City, Missouri, 1981, 1-167. [99] M. R. Querry, R. C. Waring, W. E. Holland, G. M. Hale, W. Nijm, J. Opt. Soc. Am., 1972, 62, 849-855. [100] S. J. A. van Gisbergen, J. G. Snijders, E. J. Baerends, J. Chem. Phys., 1998, 109, 10657-10668. [101] W. T. Liu, L. N. Zhang, Y. R. Shen, J. Chem. Phys., 2006, 125, 144711. [102] S. Katano, A. Bandara, J. Kubota, K. Onda, A. Wada, K. Domen, C. Hirose, Surf. Sci., 1999, 427-28, 337-342. [103] V. Pouthier, C. Ramseyer, C. Girardet, J. Chem. Phys., 1998, 108, 6502-6512. |
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[2] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[3] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[4] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[5] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[6] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[7] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[8] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[9] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[10] | Qixian Xie, Dan Ren, Lichen Bai, Rile Ge, Wenhui Zhou, Lu Bai, Wei Xie, Junhu Wang, Michael Grätzel, Jingshan Luo. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes [J]. Chinese Journal of Catalysis, 2023, 44(1): 127-138. |
[11] | Yunjian Ling, Yihua Ran, Weipeng Shao, Na Li, Feng Jiao, Xiulian Pan, Qiang Fu, Zhi Liu, Fan Yang, Xinhe Bao. Probing active species for CO hydrogenation over ZnCr2O4 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2017-2025. |
[12] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[13] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[14] | Ye Wang, Jingfeng Han, Nan Wang, Bing Li, Miao Yang, Yimo Wu, Zixiao Jiang, Yingxu Wei, Peng Tian, Zhongmin Liu. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation [J]. Chinese Journal of Catalysis, 2022, 43(8): 2259-2269. |
[15] | Si-Na Qin, Di-Ye Wei, Jie Wei, Jia-Sheng Lin, Qing-Qi Chen, Yuan-Fei Wu, Huai-Zhou Jin, Hua Zhang, Jian-Feng Li. Direct identification of the carbonate intermediate during water-gas shift reaction at Pt-NiO interfaces using surface-enhanced Raman spectroscopy [J]. Chinese Journal of Catalysis, 2022, 43(8): 2010-2016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||