Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (s1): 158-164.
Previous Articles Next Articles
CHEN Zheng, XU Xin
Online:
2019-12-17
Published:
2019-10-10
Supported by:
CHEN Zheng, XU Xin. Challenges for Theoretical Modelling of Heterogeneous Catalysis under Operando Conditions[J]. Chinese Journal of Catalysis, 2019, 40(s1): 158-164.
1 Centi G, Perathoner S, Gross S, Hensen E J M. Science and Technology Roadmap on Catalysis for Europe. A Path to Create a Sustainable Future. Bruxelles (Belgium):European Research Institute of Catalysis Pub, 2016. 2 Langmuir I. Trans Farad Soc, 1922, 17:607 3 Bergeret G, Gallezot P, Ertl G, Knözinger H, Weitkamp J. Handbook of Heterogeneous Catalysis. Weinheim:VCH, 1997. 4 Somorjai G A. Introduction to Surface Chemistry and Catalysis. New York:Wiley, 1994. 5 Wintterlin J, Schuster R, Ertl G. Phys Rev Lett, 1996, 77:123 6 Zambelli T, Trost J, Wintterlin J, Ertl G. Phys Rev Lett, 1996, 76:795 7 Zambelli T, Wintterlin J, Trost J, Ertl G. Science, 1996, 273:1688 8 Nilsson A, Pettersson L G, Norskov J. Chemical Bonding at Surfaces and Interfaces. Amsterdam:Elsevier, 2008. 9 Ball P. Nat Sci Rev, 2015, 2:202 10 Weckhuysen B M. Nat Sci Rev, 2015, 2:147 11 Tao F, Crozier P A. Chem Rev, 2016, 116:3487 12 Grajciar L, Heard C J, Bondarenko A A, Polynski M V, Meeprasert J, Pidko E A, Nachtigall P. Chem Soc Rev, 2018, 47:8307 13 Christopher P. ACS Energy Lett, 2018, 3:3015 14 Navarro V, van Spronsen M A, Frenken J W. Nat Chem, 2016, 8:929 15 Over H, Kim Y D, Seitsonen A P, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Science, 2000, 287:1474 16 Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A. Science, 2010, 327:850 17 Reuter K, Scheffler M. Phys Rev B, 2001, 65:035406 18 Reuter K, Scheffler M. Phys Rev Lett, 2003, 90:046103 19 Reuter K. Catal Lett, 2016, 146:541 20 Reuter K, Plaisance C P, Oberhofer H, Andersen M. J Chem Phys, 2017, 146:040901 21 Chen L, Falsig H, Janssens T V W, Grönbeck H. J Catal, 2018, 358:179 22 Paolucci C, Parekh A A, Khurana I, Di Iorio J R, Li H, Albarracin Caballero J D, Shih A J, Anggara T, Delgass W N, Miller J T, Ribeiro F H, Gounder R, Schneider W F. J Am Chem Soc, 2016, 138, 6028 23 Maestri M. Chem Commun, 2017, 53:10244 24 Chipot C, Pohorille A. Free Energy Calculations:Theory and Applications in Chemistry and Biology. Berlin, Heidelberg:Springer, 2007. 25 Christ C D, Mark A E, van Gunsteren W F. J Comput Chem, 2010, 31:1569 26 Hansen N, van Gunsteren W F. J Chem Theory Comput, 2014, 10:2632 27 Torrie G M, Valleau J P. J Comput Phys, 1977, 23:187 28 Liu X, Salahub D R. J Am Chem Soc, 2015, 137:4249 29 Gao Y Q. J Chem Phys, 2008, 128:064105 30 Chen Z N, Shen L, Yang M, Fu G, Hu H. J Phys Chem C, 2015, 119:26422 31 Sun G, Jiang H. J Chem Phys, 2015, 143:234706 32 Laio A, Parrinello M. Proc Natl Acad Sci USA, 2002, 99:12562 33 Martínez-Suárez L, Siemer N, Frenzel J, Marx D. ACS Catal, 2015, 5:4201 34 Ghoussoub M, Yadav S, Ghuman K K, Ozin G A, Singh C V. ACS Catal, 2016, 6:7109 35 Yang M, Yang L, Gao Y, Hu H. J Chem Phys, 2014, 141:044108 36 Yang Y I, Zhang J, Che X, Yang L, Gao Y Q. J Chem Phys, 2016, 144:094105 37 Xie L, Shen L, Chen Z N, Yang M. J Chem Phys, 2017, 146:024103 38 Cheng T, Xiao H, Goddard W A. Proc Natl Acad Sci USA, 2017, 114:1795 39 Bligaard T, Nørskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J. J Catal, 2004, 224:206 40 Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T R, Moses P G, Skúlason E, Bligaard T, Nørskov J K. Phys Rev Lett, 2007, 99:016105 41 Greeley J. Annu Rev Chem Biomol Eng, 2016, 7:605 42 Liu J C, Wang Y G, Li J. J Am Chem Soc, 2017, 139:6190 43 Jiang H, Hou Z H, Luo Y. Angew Chem Int Ed, 2017, 56:15617 44 Ouyang R, Liu J X, Li W X. J Am Chem Soc, 2013, 135:1760 45 Huang S D, Shang C, Zhang X J, Liu Z P. Chem Sci, 2017, 8:6327 46 Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Nat Commun, 2013, 4:1960 47 Zhou Q, Chen Q, Tong Y, Wang J L. Angew Chem Int Ed, 2016, 55:11437 48 Zhang X, Lei J, Wu D, Zhao X, Jing Y, Zhou Z. J Mater Chem A, 2016, 4:4871 49 Wu X P, Gong X Q. Phys Rev Lett, 2016, 116:086102 50 Liu P, Qin R, Fu G, Zheng N F. J Am Chem Soc, 2017, 139:2122 51 Mao Y, Wang H F, Hu P. Wires Comput Mol Sci, 2017, 7:e1321 52 Hougen O A, Watson K M. Chemical Process Principles. New York:Wiley, 1947. 53 Norskov J K, Bligaard T, Rossmeisl J, Christensen C H. Nat Chem, 2009, 1:37 54 Motagamwala A H, Ball M R, Dumesic J A. Annu Rev Chem Biomol Eng, 2018, 9:413 55 Jansen A P J. An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions. Heidelberg New York Dordrecht London:Springer, 2012. 56 Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H, Nørskov J K. Science, 2005, 307:555 57 Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos D G. Chem Eng Sci, 2011, 66:4319 58 Murzin D Y. Ind Eng Chem Res, 2005, 44:1688 59 Frey K, Schmidt D J, Wolverton C, Schneider W F. Catal Sci Technol, 2014, 4:4356 60 Li H P, Fu G, Xu X. Phys Chem Chem Phys, 2012, 14:16686 61 Lausche A C, Medford A J, Khan T S, Xu Y, Bligaard T, Abild-Pedersen F, Nørskov J K, Studt F. J Catal, 2013, 307:275 62 Reuter K, Frenkel D, Scheffler M. Phys Rev Lett, 2004, 93:116105 63 Stamatakis M, Vlachos D G. J Chem Phys, 2011, 134:214115 64 Stamatakis M. J Phys Condens Matter, 2015, 27:013001 65 Bortz A B, Kalos M H, Lebowitz J L. J Comp Phys, 1975, 17:10 66 Neurock M, Hansen E W. Comput Chem Eng, 1998, 22:1045 67 Stamatakis M, Vlachos D G. ACS Catal, 2012, 2:2648 68 Nilekar A U, Greeley J, Mavrikakis M A. Angew Chem Int Ed, 2006, 45:7046 69 Chen Z, Wang H, Su N Q, Duan S, Shen T, Xu X. ACS Catal, 2018, 8:5816 70 Stegelmann C, Andreasen A, Campbell C T. J Am Chem Soc, 2009, 131:8077 71 Shen T H, Xu X. Chin J Chem Phys, 2019, 32:143 |
[1] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[2] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[3] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[4] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[5] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[6] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[7] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[8] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[9] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
[10] | Hui Chen, Bo Zhang, Xiao Liang, Xiaoxin Zou. Light alloying element-regulated noble metal catalysts for energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635. |
[11] | Tao Zhang, Xiaochi Han, Nhat Truong Nguyen, Lei Yang, Xuemei Zhou. TiO2-based photocatalysts for CO2 reduction and solar fuel generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2500-2529. |
[12] | Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid [J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003. |
[13] | Zhifeng Dai, Yongquan Tang, Fei Zhang, Yubing Xiong, Sai Wang, Qi Sun, Liang Wang, Xiangju Meng, Leihong Zhao, Feng-Shou Xiao. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions [J]. Chinese Journal of Catalysis, 2021, 42(4): 618-626. |
[14] | Renyang Zheng, Zaiku Xie. Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2141-2148. |
[15] | Jinghua An, Yehong Wang, Zhixin Zhang, Jian Zhang, Martin Gocyla, Rafal E. Dunin-Borkowski, Feng Wang. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 963-969. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||