Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 9-20.DOI: 10.1016/S1872-2067(19)63382-6
• Photocatalytic H2 production • Previous Articles Next Articles
Fei Hea, Aiyun Menga, Bei Chenga, Wingkei Hob, Jiaguo Yua,c
Received:
2019-02-28
Revised:
2019-04-16
Online:
2020-01-18
Published:
2019-10-22
Supported by:
Fei He, Aiyun Meng, Bei Cheng, Wingkei Ho, Jiaguo Yu. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63382-6
[1] W. Yu, D. Xu, T. Peng, J. Mater. Chem. A, 2015, 3, 19936-19947. [2] J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503. [3] Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi, M. Jaroniec, Mater. Today, 2018, 21, 1042-1063. [4] M. Tapajna, R. Stoklas, D. Gregusova, F. Gucmann, K. Husekova, S. Hascik, K. Frohlich, L. Toth, B. Pecz, F. Brunner, J. Kuzmik, Appl. Surf. Sci., 2017, 426, 656-661. [5] F. Ye, H. F. Li, H. T. Yu, S. Chen, X. Quan, Appl. Surf. Sci., 2017, 426, 177-184. [6] R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, X. Li, Chin. J. Catal., 2019, 40, 240-288. [7] D. C. Sun, W. Y. Yang, L. Zhou, W. Z. Sun, Q. Li, J. K. Shang, Appl. Catal. B, 2016, 182, 85-93. [8] A. Y. Meng, B. C. Zhu, B. Zhong, L. Y. Zhang, B. Cheng, Appl. Surf. Sci., 2017, 422, 518-527. [9] T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, ChemCatChem, 2019, 11, 1394-1411. [10] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B, 2017, 219, 693-704. [11] Y. Fu, Z. Li, Q. Liu, X. Yang, H. Tang, Chinese J. Catal., 2017, 38, 2160-2170. [12] S. Meng, X. Ning, T. Zhang, S. F. Chen, X. Fu, Phys. Chem. Chem. Phys., 2015, 17, 11577-11585. [13] F. C. Romeiro, M. A. Rodrigues, L. A. J. Silva, A. C. Catto, L. F. da Silva, E. Longo, E. Nossol, R. C. Lima, Appl. Surf. Sci., 2017, 423, 743-751. [14] S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Appl. Catal. B, 2019, 243, 19-26. [15] J. Low, B. Cheng, J. Yu, Appl. Surf. Sci., 2017, 392, 658-686. [16] Y. Li, F. T. Liu, Y. Chang, J. Wang, C. W. Wang, Appl. Surf. Sci., 2017, 426, 770-780. [17] Z. Wang, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal., 2017, 38, 2021-2029. [18] W. L. Dai, J. J. Yu, Y. Q. Deng, X. Hu, T. Y. Wang, X. B. Luo, Appl. Surf. Sci., 2017, 403, 230-239. [19] Y. K. Sohn, W. X. Huang, F. Taghipour, Appl. Surf. Sci., 2017, 396, 1696-1711. [20] X. Ma, Q. Xiang, Y. Liao, T. Wen, H. Zhang, Appl. Surf. Sci., 2018, 457, 846-855. [21] F. Y. Xu, Y. Le, B. Cheng, C. J. Jiang, Appl. Surf. Sci., 2017, 426, 333-341. [22] J. Li, Y. Peng, X. H. Qian, J. Lin, Appl. Surf. Sci., 2018, 452, 437-442. [23] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955. [24] W. Yu, S. Zhang, J. Chen, P. Xia, M. H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A, 2018, 6, 15668-15674. [25] J. Xu, J. Yue, J. Niu, M. Chen, F. Teng, Chin. J. Catal., 2018, 39, 1910-1918. [26] J. Wang, Z. Zhang, X. Wang, Y. Shen, Y. Guo, P. K. Wong, R. Bai, Chin. J. Catal., 2018, 39, 1792-1803. [27] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B, 2019, 243, 556-565. [28] J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, Small, 2015, 11, 5262-5271. [29] Y. P. Xie, G. Liu, L. Yin, H. M. Cheng, J. Mater. Chem., 2012, 22, 6746-6751. [30] L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang, T. Xiong, Appl. Catal. B, 2018, 227, 376-385. [31] D. Spanu, S. Recchia, S. Mohajernia, P. Schmuki, M. Altomare, Appl. Catal. B, 2018, 237, 198-205. [32] H. Q. Gao, P. Zhang, J. H. Hu, J. M. Pan, J. J. Fan, G.S. Shao, Appl. Surf. Sci., 2017, 391, 211-217. [33] J. K. Mu, C. Y. Hou, G. Wang, X. M. Wang, Q. H. Zhang, Y. G. Li, H. Z. Wang, M. F. Zhu, Adv. Mater., 2016, 28, 9491-9497. [34] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179. [35] S. Kumar, N. L. Reddy, H. S. Kushwaha, A. Kumar, M. V. Shankar, K. Bhattacharyya, A. Halder, V. Krishnan, ChemSusChem, 2017, 10, 3588-3603. [36] A. Meng, L. Zhang, B. Cheng, J. Yu, ACS Appl. Mater. Interfaces, 2019, 11, 5581-5589. [37] H. Zhao, S. N. Sun, Y. Wu, P. P. Jiang, Y. M. Dong, Z. C. J. Xu, Carbon, 2017, 119, 56-61. [38] Y. Lu, X. Cheng, G. Tian, H. Zhao, L. He, J. Hu, S.-M. Wu, Y. Dong, G.-G. Chang, S. Lenaerts, S. Siffert, G. Van Tendeloo, Z.-F. Li, L.-L. Xu, X.-Y. Yang, B.-L. Su, Nano Energy, 2018, 47, 8-17. [39] H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Adv. Funct. Mater., 2018, 28, 1706917. [40] L. Pan, J. Zhang, X. Jia, Y.-H. Ma, X. Zhang, L. Wang, J.-J. Zou, Chin. J. Catal., 2017, 38, 253-259. [41] B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, S. Xiong, Adv. Mater., 2018, 30, 1705788. [42] B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, J. Phys. Chem. B, 2006, 110, 14391-14397. [43] K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Fetti, A. Baiker, Appl. Catal. B, 2008, 79, 53-62. [44] A. Gutierrez-Alejandre, J. Ramirez, G. Busca, Langmuir, 1998, 14, 630-639. [45] X. Li, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, J. Xie, Small, 2016, 12, 6640-6696. [46] D. Xu, L. Li, R. He, L. Qi, L. Zhang, B. Cheng, Appl. Surf. Sci., 2018, 434, 620-625. [47] Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578. [48] A. Kumar, L. Rout, L. S. K. Achary, A. Mohanty, R. S. Dhaka, P. Dash, RSC Adv., 2016, 6, 32074-32088. [49] A. H. Mady, M. L. Baynosa, D. Tuma, J. J. Shim, Appl. Catal. B, 2017, 203, 416-427. [50] H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Appl. Catal. B, 2018, 226, 311-323. [51] C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. O. Scanlon, A. Kafizas, P. K. Thakur, T. L. Lee, A. Taylor, G. W. Watson, R. G. Palgrave, J. R. Durrant, C. S. Blackman, I. P. Parkin, Adv. Funct. Mater., 2017, 27, 1605413. [52] J. Yu, J. Jin, B. Cheng, M. Jaroniec, J. Mater. Chem. A, 2014, 2, 3407-3416. [53] J. H. Pan, W.I. Lee, Chem. Mater., 2006, 18, 847-853. [54] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B, 2018, 230, 194-202. [55] X. Zhou, X. Zheng, B. Yan, T. Xu, Q. Xu, Appl. Surf. Sci., 2017, 400, 57-63. [56] Q. Liu, F. Wang, H. Lin, Y. Xie, N. Tong, J. Lin, X. Zhang, Z. Zhang, X. Wang, Catal. Sci. Technol., 2018, 8, 4399-4406. [57] M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin, C. Fasel, T. Herrmann, H. Breitzke, A. Gurlo, R. Riedel, J. Am. Chem. Soc., 2013, 135, 4467-4475. [58] M. Karbalaei Akbari, Z. Hai, Z. Wei, C. Detavernier, E. Solano, F. Verpoort, S. Zhuiykov, ACS Appl. Mater. Interfaces, 2018, 10, 10304-10314. [59] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051-1069. [60] K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chinese J. Catal., 2017, 38, 240-252. [61] S. K. Deb, Sol. Energy Mater. Sol. Cells, 2008, 92, 245-258. [62] S. Cong, F. Geng, Z. Zhao, Adv. Mater., 2016, 28, 10518-10528. [63] L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng, K. Yang, Y. Li, ACS Catal., 2016, 6, 1097-1108. [64] J. Low, B. Cheng, J. Yu, M. Jaroniec, Energy Storage Mater., 2016, 3, 24-35. [65] P. Srinivasa Rao, S. Bala Murali Krishna, S. Yusub, P. Ramesh Babu, C. Tirupataiah, D. Krishna Rao, J. Mol. Struct., 2013, 1036, 452-463. [66] N. Zhang, X. Li, Y. Liu, R. Long, M. Li, S. Chen, Z. Qi, C. Wang, L. Song, J. Jiang, Y. Xiong, Small, 2017, 13, 1701354. [67] Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Adv. Funct. Mater., 2013, 23, 5444-5450. [68] Z.-F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J. J. Zou, Adv. Mater., 2015, 27, 5309-5327. [69] Z. He, J. Fu, B. Cheng, J. Yu, S. Cao, Appl. Catal. B, 2017, 205, 104-111. [70] J. Fu, C. Bie, B. Cheng, C. Jiang, J. Yu, ACS Sustain. Chem. Eng., 2018, 6, 2767-2779. [71] J. Low, J. Yu, W. Ho, J. Phys. Chem. Lett., 2015, 6, 4244-4251. [72] J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater., 2019, 31, 1802981. |
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[4] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[5] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[6] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[7] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[8] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
[9] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[10] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[11] | Yang Sun, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, Xiaowei Li. Recent advances in the development of bismuth-based materials for the photocatalytic reduction of hexavalent chromium in water [J]. Chinese Journal of Catalysis, 2023, 55(12): 20-43. |
[12] | Ningning Wang, Shuo Wang, Can Li, Chenyang Li, Chunjiang Liu, Shanshan Chen, Fuxiang Zhang. ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2023, 54(11): 220-228. |
[13] | Weixu Liu, Chang He, Bowen Zhu, Enwei Zhu, Yaning Zhang, Yunning Chen, Junshan Li, Yongfa Zhu. Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight irradiation [J]. Chinese Journal of Catalysis, 2023, 53(10): 13-30. |
[14] | You Wu, Yi Yang, Miaoli Gu, Chuanbiao Bie, Haiyan Tan, Bei Cheng, Jingsan Xu. 1D/0D heterostructured ZnIn2S4@ZnO S-scheme photocatalysts for improved H2O2 preparation [J]. Chinese Journal of Catalysis, 2023, 53(10): 123-133. |
[15] | Yiming Lei, Jinhua Ye, Jordi García-Antón, Huimin Liu. Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2023, 53(10): 72-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||