Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 21-30.DOI: 10.1016/S1872-2067(19)63427-3
• Photocatalytic H2 production • Previous Articles Next Articles
Yang Lia,b, Dainan Zhanga, Xionghan Fengb, Quanjun Xianga
Received:
2019-04-30
Revised:
2019-05-27
Online:
2020-01-18
Published:
2019-10-22
Supported by:
Yang Li, Dainan Zhang, Xionghan Feng, Quanjun Xiang. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment[J]. Chinese Journal of Catalysis, 2020, 41(1): 21-30.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63427-3
[1] L. Cheng, Q. J. Xiang, Y. L. Liao, H. W. Zhang, Energy Environ. Sci., 2018, 11, 1362-1391. [2] F. Y. Cheng, H. Yin, Q. J. Xiang, Appl. Surf. Sci., 2017, 391, 432-439. [3] Y. Xia, Q. Li, K. L. Lv, M. Li, Appl. Surf. Sci., 2017, 398, 81-88. [4] Q. J. Xiang, F. Y. Cheng, D. Lang, ChemSusChem, 2016, 9, 996-1002. [5] X. Y. Ma, Q. J. Xiang, Y. L. Liao, T. L. Wen, H. W. Zhang, Appl. Surf. Sci., 2018, 457, 846-855. [6] Y. Y. Duan, L. Liang, K. L. Lv, Q. Li, M. Li, Appl. Surf. Sci., 2018, 456, 817-826. [7] R. C. Shen, C. J. Jiang, Q. J. Xiang, J. Xie, X. Li, Appl. Surf. Sci., 2019, 471, 43-87. [8] R. C. Shen, J. Xie, Q. J. Xiang, X. B. Chen, J. Z. Jiang, X. Li, Chin. J. Catal., 2019, 40, 240-288. [9] D. N. Zhang, X. Y. Ma, H. W. Zhang, Y. L. Liao, Q. J. Xiang, Mater. Today Energy, 2018, 10, 132-140. [10] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76-80. [11] Y. Li, X. H. Feng, Z. X. Lu, H. Yin, F. Liu, Q. J. Xiang, J. Colloid Interface Sci., 2018, 513, 866-876. [12] X. P. Wang, Y. X. Chen, M. Fu, Z. H. Chen, Q. L. Huang, Chin. J. Catal., 2018, 39, 1672-1682. [13] J. W. Fu, Q. L. Xu, J. X. Low, C. J. Jiang, J. G. Yu, Appl. Catal. B, 2019, 243, 556-565. [14] F. Chen, H. Yang, X. F. Wang, H. G. Yu, Chin. J. Catal., 2017, 38, 296-304 [15] X. F. Wu, J. S. Cheng, X. F. Li, Y. H. Li, K. L. Lv, Appl. Surf. Sci., 2019, 465, 1037-1046. [16] Z. Qin, W. J. Fang, J. Y. Liu, Z. D. Wei, Z. Jiang, W. F. Shangguan, Chin. J. Catal., 2018, 39, 472-478. [17] X. H. Wu, F. Y. Chen, X. F. Wang, H. G. Yu, Appl. Surf. Sci., 2018, 427, 645-653. [18] K. Maeda, ACS Catal., 2013, 3, 1486-1503. [19] H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082-3089. [20] Y. Ham, K. Maeda, D. Cha, K. Takanabe, K. Domen, Chem. Asian J., 2013, 8, 218-224. [21] G. Algara-Siller, N. Severin, S. Y. Chong, T. Björkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, M. J. Bojdys, Angew. Chem. Int. Ed., 2014, 53, 7450-7455. [22] M. K. Bhunia, K. Yamauchi, K. Takanabe, Angew. Chem. Int. Ed., 2014, 53, 11001-11005. [23] D. Dontsova, C. Fettkenhauer, V. Papaefthimiou, J. Schmidt, M. Antonietti, Chem. Mater., 2016, 28, 772-778. [24] H. H. Liu, D. L. Chen, Z. Q. Wang, H. J. Jing, R. Zhang, Appl. Catal. B, 2017, 203, 300-313 [25] Y. P. Yuan, L. S. Yin, S. W. Cao, L. N. Gu, G. S. Xu, P. Du, H. Chai, Y. S. Liao, C. Xue, Green Chem., 2014, 16, 4663-4668. [26] J. Wang, Y. Shen, Y. Li, S. Liu, Y. Zhang, Chem. Eur. J., 2016, 22, 12449-12454. [27] W. N. Xing, W. G. Tu, Z. H. Han, Y. D. Hu, Q. Q. Meng, G. Chen, ACS Energy Lett., 2018, 3, 514-519. [28] W. Iqbal, B. C. Qiu, Q. H. Zhu, M. Y. Xing, J. L. Zhang, Appl. Catal. B, 2018, 232, 306-313. [29] L. H. Lin, Z. Y. Yu, X. C. Wang, Angew. Chem. Int. Ed., 2019, 58, 6164-6175. [30] G. Li, W. H. Chang, Y. Yang, Nat. Rev. Mater., 2017, 2, 17043. [31] D. Kim, A. Osuka, Acc. Chem. Res., 2004, 37, 735-745. [32] Z. X. Zeng, H. T. Yu, X. Quan, S. Chen, S. S. Zhang, Appl. Catal. B, 2018, 227, 153-160. [33] L. H. Lin, W. Ren, C. Wang, A. M. Asiri, J. Zhang, X. C. Wang, Appl. Catal. B, 2018, 231, 234-241. [34] J. Y. Liu, W. J. Fang, Z. D. Wei, Z. Qin, Z. Jiang, W. F. Shangguan, Appl. Catal. B, 2018, 238, 465-470. [35] K. He, J. Xie, M. Li, X. Li, Appl. Surf. Sci., 2018, 430, 208-217. [36] Y. H. Li, K. L. Lv, W. K. Ho, Z. W. Zhao, Y. Huang, Chin. J. Catal., 2017, 38, 321-329. [37] P. Chen, F. Dong, M. X. Ran, J. R. Li, Chin. J. Catal., 2018, 39, 619-629. [38] C. F. Yang, W. Teng, Y. H. Song, Y. J. Cui, Chin. J. Catal., 2018, 39, 1615-1624. [39] Q. L. Xu, C. J. Jiang, B. Cheng, J. G. Yu, Dalton Trans., 2017, 46, 10611-10619. [40] B. Kurpil, A. Savateev, V. Papaefthimiou, S. Zafeiratos, T. Heil, S. Özenler, D. Dontsova, M. Antonietti, Appl. Catal. B, 2017, 217, 622-628. [41] Y. J. Zhang, A. Thomas, M. Antonietti, X. C. Wang, J. Am. Chem. Soc., 2009, 131, 50-51 [42] Y. Wu, M. Wen, M. Navlani-García, Y. Kuwahara, K. Mori, H. Yamashita, Chem. Asian J., 2017, 12, 860-867. [43] A. B. Jorge, D. J. Martin, M. T. S. Dhanoa, A. S. Rahman, N. Makwana, J. Tang, A. Sella, F. Corà, S. Firth, J. A. Darr, P. F. McMillan, J. Phys. Chem. C, 2013, 117, 7178-7185. [44] B. Chai, C. Liu, J. T. Yan, Z. D. Ren, Z. J. Wang, Appl. Surf. Sci., 2018, 448, 1-8. [45] J. W. Fu, J. G. Yu, C. J. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503 [46] B. Chai, J. T. Yan, C. L. Wang, Z. D. Ren, Y. C. Zhu, Appl. Surf. Sci., 2017, 391, 376-383. [47] H. Tan, X. M. Gu, P. Kong, Z. Lian, B. Li, Z. F. Zheng, Appl. Catal. B, 2019, 242, 67-75. [48] H. Gao, S. Yan, J. Wang, Y. A. Huang, P. Wang, Z. Li, Z. Zou, Phys. Chem. Chem. Phys., 2013, 15, 18077-18084. [49] G. Zhang, G. Li, Z. A. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2017, 56, 13445-13449. [50] L. Wang, X. Duan, G. Wang, C. Liu, S. Luo, S. Zhang, Y. Zeng, Y. Xu, Y. Liu, X. Duan, Appl. Catal. B, 2016, 186, 88-96. [51] X. Dou, Z. Lin, H. Chen, Y. Zheng, C. Lu, J. M. Lin, Chem. Commun., 2013, 49, 5871-5873. [52] C. Q. Xu, K. Li, W. D. Zhang, J. Colloid Interface Sci., 2017, 495, 27-36. [53] P. F. Xia, M. J. Liu, B. Cheng, J. G. Yu, L. Y. Zhang, ACS Sustainable Chem. Eng., 2018, 6, 8945-8953. [54] H. H. Ou, L. H. Lin, Y. Zheng, P. J. Yang, Y. X. Fang, X. C. Wang, Adv. Mater., 2017, 29, 1700008. [55] G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem., 2012, 22, 8083-8091. [56] K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker, B. V. Lotsch, J. Am. Chem. Soc., 2014, 136, 1730-1733. [57] Z. Chen, S. Pronkin, T. P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J. M. Thomas, J. Perez-Ramirez, M. Antonietti, D. Dontsova, ACS Nano, 2016, 10, 3166-3175. [58] Y. F. Guo, J. Li, Y. P. Yuan, L. Li, M. Y. Zhang, C. Y. Zhou, Z. Q. Lin, Angew, Chem. Int. Ed., 2016, 55, 14693-14697. [59] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, Z. Kang, Science, 2015, 347, 970-974. [60] D. Dontsova, S. Pronkin, M. Wehle, Z. Chen, C. Fettkenhauer, G. Clavel, M. Antonietti, Chem. Mater., 2015, 27, 5170-5179. [61] Y. Kang, Y. Yang, L. C. Yin, X. Kang, L. Wang, G. Liu, H. M. Cheng, Adv. Mater., 2016, 28, 6471-6477. [62] B. C. Zhu, L. Y. Zhang, B. Cheng, J. G. Yu, Appl. Catal. B, 2018, 224, 983-999. [63] T. Xiong, W. L. Cen, Y. X. Zhang, F. Dong, ACS Catal., 2016, 6, 2462-2472. [64] Y. Y. Wang, S. Zhao, Y. W. Zhang, J. S. Fang, Y. M. Zhou, S. H. Yuan, C. Zhang, W. X. Chen, Appl. Surf. Sci., 2018, 440, 258-265. |
[1] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[2] | Ruiyu Zhong, Yujie Liang, Fei Huang, Shinuo Liang, Shengwei Liu. Regulating interfacial coupling of 1D crystalline g-C3N4 nanorods with 2D Ti3C2Tx MXene for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 109-122. |
[3] | Yang Lei, Jian-Feng Huang, Xin-Ao Li, Chu-Ying Lv, Chao-Ping Hou, Jun-Min Liu. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(8): 2249-2258. |
[4] | Zhiliang Jin, Hongying Li, Junke Li. Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2022, 43(2): 303-315. |
[5] | Chao Ding, Chengxiao Zhao, Shi Cheng, Xiaofei Yang. Ultrahigh photocatalytic hydrogen evolution performance of coupled 1D CdS/1T-phase dominated 2D WS2 nanoheterojunctions [J]. Chinese Journal of Catalysis, 2022, 43(2): 403-409. |
[6] | Liang Jian, Huizhen Zhang, Bing Liu, Chengsi Pan, Yuming Dong, Guangli Wang, Jun Zhong, Yongjie Zheng, Yongfa Zhu. Monodisperse Ni-clusters anchored on carbon nitride for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(2): 536-545. |
[7] | Jinmao Li, Congcong Wu, Jin Li, Binghai Dong, Li Zhao, Shimin Wang. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(2): 339-349. |
[8] | Lei Cheng, Peng Zhang, Qiye Wen, Jiajie Fan, Quanjun Xiang. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(2): 451-460. |
[9] | Junxian Bai, Rongchen Shen, Zhimin Jiang, Peng Zhang, Youji Li, Xin Li. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 359-369. |
[10] | Pengyu Dong, Aicaijun Zhang, Ting Cheng, Jinkang Pan, Jun Song, Lei Zhang, Rongfeng Guan, Xinguo Xi, Jinlong Zhang. 2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2022, 43(10): 2592-2605. |
[11] | Aiyun Meng, Shuang Zhou, Da Wen, Peigang Han, Yaorong Su. g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting [J]. Chinese Journal of Catalysis, 2022, 43(10): 2548-2557. |
[12] | Zizhan Liang, Rongchen Shen, Peng Zhang, Youji Li, Neng Li, Xin Li. All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2581-2591. |
[13] | Khakemin Khan, Lifen Xu, Ming Shi, Jiangshan Qu, Xiaoping Tao, Zhaochi Feng, Can Li, Rengui Li. Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst [J]. Chinese Journal of Catalysis, 2021, 42(6): 1004-1012. |
[14] | Yang Li, Dainan Zhang, Jiajie Fan, Quanjun Xiang. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2021, 42(4): 627-636. |
[15] | Zhuwang Shao, Xiao Meng, Hong Lai, Dafeng Zhang, Xipeng Pu, Changhua Su, Hong Li, Xiaozhen Ren, Yanling Geng. Coralline-like Ni2P decorated novel tetrapod-bundle Cd0.9Zn0.1S ZB/WZ homojunctions for highly efficient visible-light photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2021, 42(3): 439-449. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||