Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 41-49.DOI: 10.1016/S1872-2067(19)63389-9
• Photocatalytic H2 production • Previous Articles Next Articles
Feifei Meia, Zhen Lia, Kai Daia, Jinfeng Zhanga, Changhao Liangb
Received:
2019-04-08
Revised:
2019-05-01
Online:
2020-01-18
Published:
2019-10-22
Supported by:
Feifei Mei, Zhen Li, Kai Dai, Jinfeng Zhang, Changhao Liang. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production[J]. Chinese Journal of Catalysis, 2020, 41(1): 41-49.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63389-9
[1] W. Yu, J. Zhang, T. Peng, Appl. Catal. B, 2016, 181, 220-227. [2] Z. Li, X. Wang, J. Zhang, C. Liang, L. Lu, K. Dai, Chin. J. Catal., 2019, 40, 326-334. [3] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179. [4] R. Shi, Y. H. Cao, Y. J. Bao, Y. F. Zhao, G. I. N. Waterhouse, Z. Y. Fang, L. Z. Wu, C. H. Tung, Y. D. Yin, T. R. Zhang, Adv. Mater., 2017, 29, 1700803. [5] A. Meng, L. Zhang, B. Cheng, J. Yu, ACS Appl. Mater. Interfaces, 2019, 11, 5581-5589. [6] W. Yu, S. Zhang, J. Chen, P. Xia, M. H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A, 2018, 6, 15668-15674. [7] B. Chai, C. Liu, C. Wang, J. Yan, Z. Ren, Chin. J. Catal., 2017, 38, 2067-2075. [8] B. Chai, M. Xu, J. Yan, Z. Ren, Appl. Surf. Sci., 2018, 430, 523-530. [9] Z. Qin, W. Fang, J. Liu, Z. Wei, Z. Jiang, W. Shangguan, Chin. J. Catal., 2018, 39, 472-478. [10] F. Mei, J. Zhang, K. Dai, G. Zhu, C. Liang, Dalton Trans., 2019, 48, 1067-1074. [11] M. F. Kuehnel, C. E. Creissen, C. D. Sahm, D. Wielend, A. Schlosser, K. L. Orchard, E. Reisner, Angew. Chem. Int. Ed., 2019, 58, 5059-5063. [12] T. Xie, Y. Liu, H. Wang, Z. Wu, Appl. Surf. Sci., 2018, 444, 320-329. [13] X. B. Fan, S. Yu, X. Wang, Z. J. Li, F. Zhan, J. X. Li, Y. J. Gao, A. D. Xia, Y. Tao, X. B. Li, L. P. Zhang, C. H. Tung, L. Z. Wu, Adv. Mater., 2019, 31, 1970048. [14] J. L. Andrews, J. Cho, L. Wangoh, N. Suwandaratne, A. Sheng, S. Chauhan, K. Nieto, A. Mohr, K. J. Kadassery, M. R. Popeil, P. K. Thakur, M. Sfeir, D. C. Lacy, T. L. Lee, P. H. Zhang, D. F. Watson, L. F. J. Piper, S. Banerjee, J. Am. Chem. Soc., 2018, 140, 17163-17174. [15] S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Appl. Catal. B, 2019, 243,19-26. [16] T. Hu, K. Dai, J. Zhang, G. Zhu, C. Liang, Appl. Surf. Sci., 2019, 481, 1385-1393. [17] A. Lamouchi, I. B. Assaker, R. Chtourou, Appl. Surf. Sci., 2019, 478, 937-945. [18] R. Chen, P. F. Wang, J. Chen, C. Wang, Y. H. Ao, Appl. Surf. Sci., 2019, 473, 11-19. [19] M. Asadi, M. H. Motevaselian, A. Moradzadeh, L. Majidi, M. Esmaeilirad, T. V. Sun, C. Liu, R. Bose, P. Abbasi, P. Zapol, A. P. Khodadoust, L. A. Curtiss, N. R. Aluru, A. Salehi-Khojin, Adv. Energy Mater., 2019, 9, 1803536. [20] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B, 2017, 219, 693-704. [21] H. An, B. Lin, C. Xue, X. Q. Yan, Y. Z. Dai, J. J. Wei, G. D. Yang, Chin. J. Catal., 2018, 39, 654-663. [22] L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, Energy Environ. Sci., 2018, 11, 106-114. [23] X. Zhao, J. Feng, J. Liu, J. Lu, W. Shi, G. Yang, G. Wang, P. Feng, P. Cheng, Adv. Sci., 2018, 5, 1700590. [24] S. Wang, C. Ren, H. Tian, J. Yu, M. Sun, Phys. Chem. Chem. Phys., 2018, 20, 13394-13399. [25] L. B. Liao, Q. H. Zhang, Z. H. Su, Z. Z. Zhao, Y. N. Wang, Y. Li, X. X. Lu, D. G. Wei, G. Y. Feng, Q. K. Yu, X. J. Cai, J. M. Zhao, Z. F. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. M. Bao, Nat. Nanotechnol., 2014, 9, 69-73. [26] Z. Y. Mao, J. J. Chen, Y. F. Yang, D. J. Wang, L. J. Bie, B. D. Fahlman, ACS Appl. Mater. Interfaces, 2017, 9, 12427-12435. [27] J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater., 2018, 31, 1802981. [28] J. Lv, J. Zhang, J. Liu, Z. Li, K. Dai, C. Liang, ACS Sustain. Chem. Eng., 2018, 6, 696-706. [29] T. Hu, P. Li, J. Zhang, C. Liang, K. Dai, Appl. Surf. Sci., 2018, 442, 20-29. [30] B. Ma, R. Zhang, K. Lin, H. Liu, X. Wang, W. Liu, H. Zhan, Chin. J. Catal., 2018, 39, 527-533. [31] T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, ChemCatChem, 2019, 11, 1394-1411. [32] Q. Li, H. Meng, P. Zhou, Y. Q. Zheng, J. Wang, J. G. Yu, J. R. Gong, ACS Catal., 2013, 3, 882-889. [33] L. Ma, K. Chen, F. Nan, J.-H. Wang, D.-J. Yang, L. Zhou, Q.-Q. Wang, Adv. Funct. Mater., 2016, 26, 6076-6083. [34] J. Feng, C. An, L. Dai, J. Liu, G. Wei, S. Bai, J. Zhang, Y. Xiong, Chem. Eng. J., 2016, 283, 351-357. [35] L. Zhang, X. Fu, S. Meng, X. Jiang, J. Wang, S. Chen, J. Mater. Chem. A, 2015, 3, 23732-23742. [36] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B, 2018, 230, 194-202. [37] C. Liu, B. Chai, C. Wang, J. Yan, Z. Ren, Int. J. Hydrogen Energy, 2018, 43, 6977-6986. [38] F. Deng, X. Lu, Y. Luo, J. Wang, W. Che, R. Yang, X. Luo, S. Luo, D. D. Dionysiou, Chem. Eng. J., 2019, 361, 1451-1461. [39] S. Wepfer, J. Frohleiks, A.R. Hong, H.S. Jang, G. Bacher, E. Nannen, ACS Appl. Mater. Interfaces, 2017, 9, 11224-11230. [40] W. Chen, Z.-C. He, G.-B. Huang, C.-L. Wu, W.-F. Chen, X.-H. Liu, Chem. Eng. J., 2019, 359, 244-253. [41] J. Zhang, G. Huang, J. Zeng, Y. Shi, S. Lin, X. Chen, H. Wang, Z. Kong, J. Xi, Z. Ji, J. Am. Ceram. Soc., 2019, 102, 2810-2819. [42] G. Naresh, P.-L. Hsieh, V. Meena, S.-K. Lee, Y.-H. Chiu, M. Madasu, A.-T. Lee, H.-Y. Tsai, T.-H. Lai, Y.-J. Hsu, Y.-C. Lo, M. H. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 3582-3589. [43] K. Dai, J. Lv, J. Zhang, G. Zhu, L. Geng, C. Liang, ACS Sustain. Chem. Eng., 2018, 6, 12817-12825. [44] J. Lv, J. Zhang, K. Dai, C. Liang, G. Zhu, Z. Wang, Z. Li, Dalton Trans., 2017, 46, 11335-11343. [45] S. Wei, Y. Liu, M. Ma, Y. Wu, L. Huanga, D. Pan, J. Mater. Chem. C, 2018, 6, 11104-11110. [46] M. Imran, A. B. Yousaf, P. Kasak, A. Zeb, S. J. Zaidi, J. Catal., 2017, 353, 81-88. [47] Y. Zhang, Y.-Z. Lin, Z.-X. Wang, K. Li, T. Li, F.-T. Liu, Catal. Sci. Technol., 2019, 9, 583-587. [48] K. Dai, L. Lu, C. Liang, Q. Liu, G. Zhu, Appl. Catal. B, 2014, 156-157, 331-340. [49] Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B, 2019, 241, 528-538. [50] Y. Zhang, C. Ren, Y. Zhang, W. Lin, K. Ding, Appl. Surf. Sci., 2019, 478, 119-127. [51] Y. Huo, Z. Wang, J. Zhang, C. Liang, K. Dai, Appl. Surf. Sci., 2018, 459, 271-280. [52] B. Zhu, L. Zhang, B. Cheng, J. Yu, Appl. Catal. B, 2018, 224, 983-999. [53] X. Du, X. Yi, P. Wang, J. Deng, C.-C. Wang, Chin. J. Catal., 2019, 40, 70-79. [54] B. Chai, C. Liu, J. Yan, Z. Ren, Z.-J. Wang, Appl. Surf. Sci., 2018, 448, 1-8. [55] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B, 2019, 243, 556-565. [56] Y. Liu, H. Liu, H. Zhou, T. Li, L. Zhang, Appl. Surf. Sci., 2019, 466, 133-140. [57] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Small, 2017, 13, 1603938. [58] Y. Xu, F. Ge, Z. Chen, S. Huang, W. Wei, M. Xie, H. Xu, H. Li, Appl. Surf. Sci., 2019, 469, 739-746. [59] J. Ge, Y. Liu, D. Jiang, L. Zhang, P. Du, Chin. J. Catal., 2019, 40, 160-167. [60] S. Ma, X. Xu, J. Xie, X. Li, Chin. J. Catal., 2017, 38, 1970-1980. [61] L. Kong, J. Yan, S. F. Liu, ACS Sustain. Chem. Eng., 2019, 7, 1389-1398. [62] Y. Huo, Y. Yang, K. Dai, J. Zhang, Appl. Surf. Sci., 2019, 481, 1260-1269. [63] P. Xia, M. Liu, B. Cheng, J. Yu, L. Zhang, ACS Sustain. Chem. Eng., 2018, 6, 8945-8953. [64] Y. Wei, Y. Zhu, Y. Jiang, Chem. Eng. J., 2019, 356, 915-925. [65] N. Mao, J.-X. Jiang, Appl. Surf. Sci., 2019, 476, 144-150. [66] X. Geng, S. Chen, X. Lv, W. Jiang, T. Wang, Appl. Surf. Sci., 2018, 462, 18-28. [67] J. Lv, K. Dai, J. Zhang, L. Geng, C. Liang, Q. Liu, G. Zhu, C. Chen, Appl. Surf. Sci., 2015, 358, 377-384. [68] Z. Wang, J. Lv, J. Zhang, K. Dai, C. Liang, Appl. Surf. Sci., 2018, 430, 595-602. [69] W. Liu, X. Wang, H. Yu, J. Yu, ACS Sustain. Chem. Eng., 2018, 6, 12436-12445. [70] R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Nanoscale Horiz., 2018, 3, 464-504. [71] F. Xu, B. Zhu, B. Cheng, J. Yu, J. Xu, Adv. Opt. Mater., 2018, 6, 1800911. [72] S. Cao, H. Li, Y. Li, B. Zhu, J. Yu, ACS Sustain. Chem. Eng., 2018, 6, 6478-6487. |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[4] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[5] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[6] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[7] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[8] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[9] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[10] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[11] | Cheng Liu, Mengning Chen, Yingzhang Shi, Zhiwen Wang, Wei Guo, Sen Lin, Jinhong Bi, Ling Wu. Ultrathin ZnTi-LDH nanosheet: A bifunctional Lewis and Brönsted acid photocatalyst for synthesis of N-benzylideneanilline via a tandem reaction [J]. Chinese Journal of Catalysis, 2023, 49(6): 102-112. |
[12] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[13] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[14] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[15] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||