Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 62-71.DOI: 10.1016/S1872-2067(19)63421-2
• Photocatalytic H2 production • Previous Articles Next Articles
Xunfu Zhou, Qiongzhi Gao, Siyuan Yang, Yueping Fang
Received:
2019-04-29
Revised:
2019-06-03
Online:
2020-01-18
Published:
2019-10-22
Supported by:
Xunfu Zhou, Qiongzhi Gao, Siyuan Yang, Yueping Fang. Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1): 62-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63421-2
[1] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179. [2] J. A. Turner, Science, 2004, 305, 972-974. [3] X. Li, R. Shen, S. Ma, X. Chen, J. Xie, Appl. Surf. Sci., 2018, 430, 53-107. [4] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J. R. Gong, Adv. Mater., 2013, 25, 3820-3839. [5] W. Wang, D. Xu, B. Cheng, J. Yu, C. Jiang, J. Mater. Chem. A, 2017, 5, 5020-5029. [6] Q. Xu, B. Cheng, J. Yu, G. Liu, Carbon, 2017, 118, 241-249. [7] B. Liu, X. Liu, L. Li, J. Li, C. Li, Y. Gong, L. Niu, X. Zhao, C. Q. Sun, Chin. J. Catal., 2018, 39, 1901-1909. [8] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. R. Gong, J. Am. Chem. Soc., 2011, 133, 10878-10884. [9] J. Zhang, J. Yu, M. Jaroniec, J. R. Gong, Nano Lett., 2012, 12, 4584-4589. [10] K. Zhang, Q. Liu, H. Wang, R. Zhang, C. Wu, J. R. Gong, Small, 2013, 9, 2452-2459. [11] J. Cai, W. Liu, Z. Li, Appl. Surf. Sci., 2015, 358, 146-151. [12] C. A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda, A. Tacca, Chem. Soc. Rev., 2013, 42, 2228-2246. [13] G.-J. Lee, J. J. Wu, Powder Technol., 2017, 318, 8-22. [14] Q. Hao, S. Hao, X. Niu, X. Li, D. Chen, H. Ding, Chin. J. Catal., 2017, 38, 278-286. [15] S. Ma, X. Xu, J. Xie, X. Li, Chin. J. Catal., 2017, 38, 1970-1980. [16] Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, P. Yan, Y. Xu, Y. Lei, S. Yuan, H. Li, Chin. J. Catal., 2018, 39, 760-770. [17] H. He, L. Huang, Z. Zhong, S. Tan, Appl. Surf. Sci., 2018, 441, 285-294. [18] Y. Ding, Y. Gao, Z. Li, Appl. Surf. Sci., 2018, 462, 255-262. [19] G. Xie, K. Zhang, H. Fang, B. Guo, R. Wang, H. Yan, L. Fang, J. R. Gong, Chem. Asian J., 2013, 8, 2395-2400. [20] Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, J. Gong, ACS Catal., 2013, 3, 882-889. [21] X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, J. Mater. Chem. A, 2015, 3, 2485-2534. [22] S. Cao, J. Yu, J Photochem. Photobio C, 2016, 27, 72-99. [23] Q. Xu, C. Jiang, B. Cheng, J. Yu, Dalton Trans., 2017, 46,10611-10619. [24] K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater., 2009, 21, 2233-2239. [25] A. Hu, S. Liu, W. Lin, RSC Adv., 2012, 2, 2576-2580. [26] S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard, C. B. Mullins, J. Am. Chem. Soc., 2012, 134, 3659-3662. [27] Y. J. Hwang, A. Boukai, P. Yang, Nano Lett., 2009, 9, 410-415. [28] C. G. Silva, J. L. Faria, Appl. Catal. B, 2010, 101, 81-89. [29] Y. Yu, J. C. Yu, C.-Y. Chan, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Appl. Catal. B, 2005, 61, 1-11. [30] N. Bouazza, M. Ouzzine, M. A. Lillo-Ródenas, D. Eder, A. Linares-Solano, Appl. Catal. B, 2009, 92, 377-383. [31] Y.-J. Xu, Y. Zhuang, X. Fu, J. Phys. Chem. C, 2010, 114, 2669-2676. [32] Z. Li, B. Gao, G. Z. Chen, R. Mokaya, S. Sotiropoulos, G. Li Puma, Appl. Catal. B, 2011, 110, 50-57. [33] K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Chem. Eng. J., 2012, 191, 571-578. [34] S.-A. Feng, J.-H. Zhao, Z.-P. Zhu, New Carbon Mater., 2008, 23, 228-234. [35] Y. Hu, Y. Liu, H. Qian, Z. Li, J. F. Chen, Langmuir, 2010, 26, 18570-18575. [36] L. Tian, L. Ye, J. Liu, L. Zan, Catal. Commun., 2012, 17, 99-103. [37] Y. Xu, H. Xu, L. Wang, J. Yan, H. Li, Y. Song, L. Huang, G. Cai, Dalton Trans., 2013, 42, 7604-7613. [38] M. Steenackers, I. D. Sharp, K. Larsson, N. A. Hutter, M. Stutzmann, R. Jordan, Chem. Mater., 2010, 22, 272-278. [39] Y. Li, Z. Yu, J. Meng, Y. Li, Int. J. Hydrogen Energy, 2013, 38, 3898-3904. [40] W. Zhou, L. Yan, Y. Wang, Y. Zhang, Appl. Phys. Lett., 2006, 89, 013105/1-013105/3. [41] D. Beke, K. Horváth, K. Kamarás, A. Gali, Langmuir, 2017, 33, 14263-14268. [42] J.-Y. Hao, Y.-Y. Wang, X.-L. Tong, G.-Q. Jin, X.-Y. Guo, Catal. Today, 2013, 212, 220-224. [43] M. Wang, J. Chen, X. Liao, Z. Liu, J. Zhang, L. Gao, Y. Li, Int. J. Hydrogen Energy, 2014, 39, 14581-14587. [44] Y. Wang, L. Zhang, X. Zhang, Z. Zhang, Y. Tong, F. Li, J. C. S. Wu, X. Wang, Appl. Catal. B, 2017, 206, 158-167. [45] C. B. D. Marien, M. Le Pivert, A. Azaïs, I. C. M'Bra, P. Drogui, A. Dirany, D. Robert, J. Hazard Mater., 2018, 164-171. [46] J. Zhang, X. L. Wu, L. Z. Liu, L. Yang, Z. X. Gan, P. K. Chu, AIP Adv., 2015, 5, 037120/1-037120/7. [47] X. Guo, X. Tong, Y. Wang, C. Chen, G. Jin, X.-Y. Guo, J. Mater. Chem. A, 2013, 1, 4657-4661. [48] X. Zhou, Y. Liu, X. Li, Q. Gao, X. Liu, Y. Fang, Chem. Commun., 2014, 50, 1070-1073. [49] X. Liao, J. Chen, M. Wang, Z. Liu, L. Ding, Y. Li, J. Alloys Compd., 2016, 658, 642-648. [50] Y. Peng, Z. Guo, J. Yang, D. Wang, W. Yuan, J. Mater. Chem. A, 2014, 2, 6296-6300. [51] D. Wang, W. Wang, Q. Wang, Z. Guo, W. Yuan, Mater. Lett., 2017, 201, 114-117. [52] Y. Wang, X. Guo, L. Dong, G. Jin, Y. Wang, X.-Y. Guo, Int. J. Hydrogen Energy, 2013, 38, 12733-12738. [53] J. Yang, X. Zeng, L. Chen, W. Yuan, Appl. Phys. Lett., 2013, 102, 083101/1-083101/4. [54] Y. Nariki, Y. Inoue, K. Tanaka, J. Mater. Sci., 1990, 25, 3101-3104. [55] X. Zhou, Q. Gao, X. Li, Y. Liu, S. Zhang, Y. Fang, J. Li, J. Mater. Chem. A, 2015, 3, 10999-11005. [56] X. Zhou, X. Li, Q. Gao, J. Yuan, J. Wen, Y. Fang, W. Liu, S. Zhang, Y. Liu, Catal. Sci. Technol., 2015, 5, 2798-2806. [57] J. Song, H. Zhao, R. Sun, X. Li, D. Sun, Energy Environ. Sci., 2017, 10, 225-235. [58] R. Wu, K. Zhou, C. Y. Yue, J. Wei, Y. Pan, Prog. Mater. Sci., 2015, 72, 1-60. [59] F. O. Saeva, Pure Appl. Chem., 1974, 38, 25-36. [60] J. Xu, Y. Wang, Y. Zhu, Langmuir, 2013, 29, 10566-10572. [61] B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, S. Xie, D. Fang, Nano Res., 2016, 9, 886-898. [62] J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen, X. Li, ACS Appl. Mater. Interfaces, 2017, 9, 14031-14042. [63] T. Lv, L. Pan, X. Liu, Z. Sun, Catal. Sci. Technol., 2012, 2, 2297-2301. [64] T. Maassen, J. J. van den Berg, N. Ijbema, F. Fromm, T. Seyller, R. Yakimova, B. J. van Wees, Nano Lett., 2012, 12, 1498-1502. [65] S. Ma, Y. Deng, J. Xie, K. He, W. Liu, X. Chen, X. Li, Appl. Catal. B, 2018, 227, 218-228. [66] R. L. Zhou, R. Z. Zuo, L. Wang, B. H. Zhang, B. C. Pan, J. Appl. Phys., 2011, 109, 084318/1-084318/7. [67] Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578. [68] W. Lu, D. Wang, L. Guo, Y. Jia, M. Ye, J. Huang, Z. Li, Y. Peng, W. Yuan, X. Chen, Adv. Mater., 2015, 27, 7986-7991. [69] B. Weng, S. Liu, N. Zhang, Z.-R. Tang, Y.-J. Xu, J Catal, 2014, 309, 146-155. [70] A. S. Cherevan, P. Gebhardt, C. J. Shearer, M. Matsukawa, K. Domen, D. Eder, Energy Environ. Sci., 2014, 7, 791-796. [71] J. Nakamura, A. Natori, Surf. Sci., 2006, 600, 4332-4336. [72] T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang, G. Liu, J. Zou, P. Khemthong, G. Q. M. Lu, L. Wang, Adv. Mater., 2018, 30,1705666. [73] K. Senthil, K. Yong, Mater. Chem. Phys., 2008, 112, 88-93. [74] M. Shiraishi, M. Ata, MRS Proceedings, 2011, 633, A4.4. |
[1] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[2] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[3] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[4] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[5] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[6] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[7] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[8] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[9] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[10] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[11] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[12] | Ni Wang, Xue-Peng Zhang, Jinxiu Han, Haitao Lei, Qingxin Zhang, Hang Zhang, Wei Zhang, Ulf-Peter Apfel, Rui Cao. Promoting hydrogen evolution reaction with a sulfonic proton relay [J]. Chinese Journal of Catalysis, 2023, 45(2): 88-94. |
[13] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[14] | Qiyou Wang, Yujie Gong, Yao Tan, Xin Zi, Reza Abazari, Hongmei Li, Chao Cai, Kang Liu, Junwei Fu, Shanyong Chen, Tao Luo, Shiguo Zhang, Wenzhang Li, Yifa Sheng, Jun Liu, Min Liu. Cooperative alkaline hydrogen evolution via inducing local electric field and electron localization [J]. Chinese Journal of Catalysis, 2023, 54(11): 229-237. |
[15] | Chao Wu, Kangle Lv, Xin Li, Qin Li. Dual cocatalysts for photocatalytic hydrogen evolution: Categories, synthesis, and design considerations [J]. Chinese Journal of Catalysis, 2023, 54(11): 137-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||