Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 82-94.DOI: 10.1016/S1872-2067(19)63454-6
• Photocatalytic H2 production • Previous Articles Next Articles
Lijun Zhanga,b,c, Xuqiang Haoa,b,c, Junke Lia,b,c, Yuanpeng Wanga,b,c, Zhiliang Jina,b,c
Received:
2019-06-16
Revised:
2019-07-12
Online:
2020-01-18
Published:
2019-10-22
Supported by:
Lijun Zhang, Xuqiang Hao, Junke Li, Yuanpeng Wang, Zhiliang Jin. Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2020, 41(1): 82-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63454-6
[1] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M, Antonietti, Nat. Mater., 2009, 8, 76-80. [2] B. Q. Wang, Y. Ding, Z. R. Deng, Z. H. Li, Chin. J. Catal., 2019, 40, 335-342. [3] Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, J. R. Gong, J. Am. Chem. Soc., 2011, 133, 10878-10884. [4] N. Xiao, S. S. Li, S. Liu, B. R. Xu, Y. D. Li, Y. Q. Gao, L. Ge, G. W. Lu, Chin. J. Catal., 2019, 40, 352-361. [5] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 2010, 26, 3894-3901. [6] X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176-7177. [7] Y. Xu, Y. G. Li, P. Wang, X. F. Wang, H. G. Yu, Appl. Surf. Sci., 2018, 430, 176-183. [8] Z. L. Jin, X. J. Zhang, Y. X. Li, S. B. Li, G. X. Lu, Catal. Commun., 2007, 8, 1267-1273. [9] A. Singh, A. S. K. Sinha, Appl. Surf. Sci., 2018, 430, 184-197. [10] F. Y. Xu, L. Y. Zhang, B. Cheng, J. G. Yu, ACS Sustainable Chem. Eng., 2018, 6, 12291-12298. [11] Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Appl. Surf. Sci., 2015, 358, 350-355. [12] Z. X. Xu, J. G. Yu, G. Liu, Electrochem. Commun., 2011, 13, 1260-1263. [13] D. Z. Wang, X. Y. Zhang, S. Y. Bao, Z. T. Zhang, H. Fei, Z. Z. Wu, J. Mater. Chem. A, 2017, 5, 2681-2688. [14] W. L. Yu, S. Zhang, J. X. Chen, P. F. Xia, M. H. Richter, L. F. Chen, W. Xu, J. P. Jin, S. L. Chena, T. Y. Peng, J. Mater. Chem. A, 2018, 6, 15668-15674. [15] B. J. Ma, D. K. Li, X. Y. Wang, K. Y. Lin, ChemSusChem, 2018, 11, 3871-3881. [16] C. C. Feng, Z. H. Wang, Y. Ma, Y. J, Zhang, L. Wang, Y. P. Bi, Appl. Catal. B, 2017, 205, 19-23. [17] A. Y. Meng, L. Y. Zhang, B. Cheng, J. G. Yu, Adv. Mater., 2019, 31, 1807660. [18] L. J. Zhang, X. Q. Hao, Q. Y. Jian, Z. L. Jin, J. Solid State Chem., 2019, 274, 286-294. [19] L. S. Byskov, J. K. Nørskov, B. S. Clausen, H. Topsøe, Catal. Lett., 2000, 64, 95-99. [20] D. D. Liu, Z. L. Jin, Y. P. Bi, Catal. Sci. Technol., 2017, 7, 4478-4488. [21] H. Yang, Z. L. Jin, H. Y. Hu, Y. P. Bi, G. X. Lu, Appl. Surf. Sci., 2018, 427, 587-597. [22] J. X. Low, J. G. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater., 2017, 29, 1601694. [23] X. Q. Hao, Z. L. Jin, H. Yang, G. X. Lu, Y. P. Bi, Appl. Catal. B, 2017, 210, 45-56. [24] H. H. Ou, P. J. Yang, L. H. Lin, M. Anpo, X. C. Wang, Angew. Chem. Int. Ed., 2017, 56, 10905-10910. [25] Y. X. Li, Y. L. Hou, Q. Y. Fu, S. Q. Peng, Y. H. Hu, Appl. Catal. B, 2017, 206, 726-733. [26] S. S. Yi, J. M. Yan, B.R. Wulan, S. J. Li, K. H. Liu, L. Q. Jiang, Appl. Catal. B, 2017, 200, 477-483. [27] J. S. Zhang, G. G. Zhang, X. F. Chen, S. Lin, L. Möhlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert, X. C. Wang, Angew. Chem. Int. Ed., 2012, 124, 3237-3241. [28] W. L. Zhen, H. B. Gao, B. Tian, J. T. Ma, G. X. Lu, ACS Appl. Mater. Interfaces, 2016, 810808-10819. [29] S. M. Kim, S. H. Jin, Y. J. Lee, M. H. Lee, Electrochim. Acta, 2017, 252, 67-75. [30] X. Yan, Z. L. Jin, Y. P. Zhang, H. Liu, X. Ma, Phys. Chem. Chem. Phys., 2019, 21, 4501-4512. [31] Y. B. Li, Z. L. Jin, H. Y. Wang, Y. B. Zhang, H. Liu, J. Colloid Interf. Sci., 2019, 537, 629-639. [32] Z. J. Wang, Z. L. Jin, H. Yang, X. L. Ma, H. Liu, Mol. Catal., 2019, 467, 78-86 [33] J. F. Wang, P. F. Wang, J. Hou, J. Qian, C. Wang, Y. H. Ao, Catal. Sci. Technol., 2018, 8, 5406-5415. [34] L. J. Zhang, Z. L. Jin, Catal. Surv. Asia, 2019, 23, 219-230. [35] H. Li, X. Q. Yan, B. Lin, M. Y. Xia, J. J. Wei, B. L. Yang, G. D. Yang, Nano Energy, 2018, 47, 481-493. [36] X. L. Yang, A. Y. Lu, Y. H. Zhu, M. N. Hedhili, S. X. Min, K. W. Huang, Y. Han, L. J. Li, Nano Energy, 2015, 15, 634-641. [37] Y. Xu, R. Wu, J. F. Zhang, Y. M. Shia, B. Zhang, Chem. Commun., 2013, 49, 6656-6658. [38] P. Xiao, M. A. Sk, L. Thia, X. M. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci., 2014, 7, 2624-2629. [39] J. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, C. G. Read, N. S. Lewis, R. E. Schaak, Chem. Commun., 2014, 50, 11026-11028. [40] Y. Zhang, H. J. Zhang, Y. Y. Feng, L. Liu, Y. Wang, ACS Appl. Mater. Inter., 2015, 7, 48, 26684-26690. [41] H. Y. Wang, Z. L. Jin, New J. Chem., 2018, 42, 17396-17406. [42] R. C. Shen, J. Xie, H. D. Zhang, A. P. Zhang, X. B. Chen, X. Li, ACS Sustain Chem. Eng., 2018, 6, 816-826. [43] Y. P. Zhang, Z. L. Jin, Y. F. Su, G. R. Wang, Mol. Catal., 2019, 462, 46-55. [44] H. Zhao, P. P. Jiang, W. Cai, Chem. Asian J., 2017, 12, 361-365. [45] R. Shi, H. F. Ye, F. Liang, Z. Wang, K. Li, Y. X. Weng, Z. S. Lin, W. F. Fu, C. M. Che, Y. Chen, Adv. Mater., 2018, 30, 1705941. [46] A. E. Nelson, K. H. Schulz, Appl. Surf. Sci., 2003, 210, 3-4, 206-211. [47] L. Zhu, Q. Li, J. Y. Li, X. D. Liu, J. Meng, X. Q. Cao, J. Nanopart Res., 2007, 9, 261-268. [48] L. Guang, X. J. Zou, F. Wang, H. Wang, W. Li, Mater. Lett., 2017, 195, 168-171. [49] L. J. Zhang, Z. L. Jin, X. L. Ma, Y. P. Zhang, H. Y. Wang, New J. Chem., 2019, 43, 3609-3618. [50] Y. B. Li, Z. L. Jin, H. Liu, H. Y. Wang, Y. P. Zhang, G. R. Wang, J. Colloid Interf. Sci., 2019, 541, 287-299. [51] X. J. Zhang, Z. L. Jin, Y. X. Li, S. B. Li, G. X. Lu, J. Phys. Chem. C, 2009, 113, 2630-2635. [52] X. Q. Hao, J. Zhou, Z. W. Cui, Y. C. Wang, Y. Wang, Z. G. Zou, Appl. Catal. B, 2018, 229, 41-51. [53] Y. Pan, K. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen, Y. D. Li, J. Am. Chem. Soc, 2018, 140, 2610-2618 [54] T. F. Jiang, T. F. Xie, L. P. Chen, Z. W. Fu, D. J. Wang, Nanoscale, 2013, 5, 2938-2944. [55] L. J. Zhang, Z. L. Jin, Y. B. Li, X. Q. Hao, F. L. Han, Catal. Lett., 2019, 149, 2397-2407. [56] J. W. Fu, Q. L. Xu, J. X. Low, C. J. Jiang, J. G. Yu, Appl. Catal. B, 2019, 243, 556-565. |
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[3] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[4] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[5] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[6] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[7] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[8] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[9] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[10] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[11] | Jingxiang Low, Chao Zhang, Ferdi Karadas, Yujie Xiong. Photocatalytic CO2 conversion: Beyond the earth [J]. Chinese Journal of Catalysis, 2023, 50(7): 1-5. |
[12] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[13] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[14] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[15] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||