Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (1): 131-139.DOI: 10.1016/S1872-2067(19)63393-0
• Photocatalytic CO2 reduction • Previous Articles Next Articles
Hongjia Wanga,b, Yanjie Wanga, Lingju Guoa, Xuehua Zhanga, Caue Ribeiroc,d, Tao Hea,b
Received:
2019-04-12
Revised:
2019-05-05
Online:
2020-01-18
Published:
2019-10-22
Supported by:
Hongjia Wang, Yanjie Wang, Lingju Guo, Xuehua Zhang, Caue Ribeiro, Tao He. Solar-heating boosted catalytic reduction of CO2 under full-solar spectrum[J]. Chinese Journal of Catalysis, 2020, 41(1): 131-139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63393-0
[1] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res., 2009, 42, 1890-1898. [2] D. G. Nocera, Acc. Chem. Res., 2012, 45, 767-776. [3] A. J. Morris, G. J. Meyer, E. Fujita, Acc. Chem. Res., 2009, 42, 1983-1994. [4] Y. Ma, Z. Wang, X. Xu, J. Wang, Chin. J. Catal., 2017, 38, 1956-1969. [5] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179. [6] X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Sci. Chin. Mater., 2014, 57, 70-100. [7] W. Tu, Y. Zhou, Z. G. Zou, Adv. Mater., 2014, 26, 4607-4626. [8] E. J. Maginn, J. Phys. Chem. Lett., 2013, 1, 3478-3479. [9] M. Aresta, A. Dibenedetto, Dalton Transact., 2007, 2975-2992. [10] J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev., 2015, 115, 12888-12935. [11] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed., 2013, 52, 7372-7408. [12] J. Ran, M. Jaroniec, S. Z. Qiao, Adv. Mater., 2018, 30, 17046-17049. [13] A. L. Strickler, M. Escudero, T. F. Jaramillo, Nano Lett., 2017, 17, 6040-6046. [14] J. Low, B. Cheng, J. Yu, Appl. Surf. Sci., 2017, 392, 658-686. [15] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 1979, 277, 637-638. [16] M. Wang, J. Iocozzia, L. Sun, C. Lin, Z. Lin, Energy Environ. Sci., 2017, 7, 2182-2202. [17] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev., 2014, 114, 9987-10043. [18] K. Qi, S. Liu, M. Qiu, Chin. J. Catal., 2018, 39, 867-875. [19] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955. [20] G. V. Hartland, L. V. Besteiro, P. Johns, A. O. Govorov, ACS Energy Lett., 2017, 2, 1641-1653. [21] J. Low, S. Qiu, D. Xu, C. Jiang, B. Cheng, Appl. Surf. Sci., 2018, 434, 423-432. [22] Z. Lou, S. Kim, P. Zhang, X. Shi, M. Fujitsuka, T. Majima, ACS Nano, 2016, 11, 968-974. [23] S. Yu, A. J. Wilson, G. Kumari, X. Zhang, P. K. Jain, ACS Energy Lett., 2017, 2, 2058-2070. [24] A. Naldoni, T. Montini, F. Malara, M. M. Mróz, A. Beltram, T. Virgili, C. L. Boldrini, M. Marelli, I. Romero-Ocaña, J. J. Delgado, V. Dal Danto, P. Fornasiero, ACS Catal., 2017, 7, 1270-1278. [25] J. Zhang, X. Jin, P. I. Morales-Guzman, X. Yu, H. Liu, H. Zhang, L. Razzari, J. P. Claverie, ACS Nano, 2016, 10, 4496-4503. [26] W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin, ACS Catal., 2011, 1, 929-936. [27] F. Xu, B. Zhu, B. Cheng, J. Yu, J. Xu, Adv. Opt. Mater., 2018, 23, 1800911. [28] M. Edelmannová, K. Lin, J. C. S. Wu, I. Troppová, L. Capek, K. Kocí, Appl. Surf. Sci., 2108, 454, 313-318. [29] F. Xu, K. Meng, B. Cheng, J. Yu, W. Ho, ChemCatChem., 2019, 11, 465-472. [30] H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Appl. Surf. Sci., 2018, 439, 552-559. [31] S. Y. Wang, Y. Y. Gao, S. Miao, T. F. Liu, L. C. Mu, R. G. Li, F. T. Fan, C. Li, J. Am. Chem. Soc., 2017, 139, 11771-11778. [32] S. Y. Wang, Y. Y. Gao, Y. Qi, A. L. Li, F. T. Fan, C. Li, J. Catal., 2017, 354, 250-257. [33] F. Rechberger, M. Niederberger, Mater. Horizons, 2017, 4, 1115-1121. [34] W. Kim, E. Edri, H. Frei, Acc. Chem. Res., 2016, 49, 1634-1645. [35] Z. Gan, X. Wu, M. Meng, X. Zhu, L. Yang, P. K. Chu, ACS Nano, 2014, 8, 9304-9310. [36] J. Wang, L. Zhu, G. Dharan, G. W. Ho, J. Mater. Chem. A, 2017, 5, 16580-16584. [37] F. Wang, Y. Huang, Z. Chai, M. Zeng, Q. Li, Y. Wang, D. S. Xu, Chem. Sci., 2016, 7, 6887-6893. [38] M. Dilla, A. Mateblowski, S. Ristig, J. Strunk, ChemCatChem, 2017, 9, 4345-4352. [39] L. Zhang, G. Kong, Y. Meng, J. Tian, L. Zhang, S. Wan, J. D. Lin, Y. Wang. ChemSusChem, 2017, 10, 4709-4714. [40] M. F. Ehsan, T. He, Appl. Catal. B, 2015, 166, 345-352. [41] J. Xue, O. Elbanna, S. Kim, M. Fujitsuka, T. Majima, Chem. Commun., 2018, 54, 6052-6055. [42] T. D. Nguyen-phan, S. Luo, D. Vovchok, J. Llorca, J. Garciani, J. F. Sanz, S. Sallis, W. Xu, J. Bai, L. F. Piper, D. E. Polvansky, E. Fujita, S. D. Senanayake, D. J. Stacchiola, J. A. Rodriguez, ACS Catal., 2016, 6, 407-417. [43] M. Zhou, C. Zeng, Y. Chen, S. Zhao, M. Y. Sfeir, M. Z. Zhu, R. C. Jin, Nat. Commun., 2016, 7, 13240-13246. [44] F. Wang, Q. Li, D. S. Xu, Adv. Energy Mater., 2017, 7, 1700529. [45] M. Majek, U. Faltermeier, B. Dick, R. Pérezruiz, A. J. Von Wangelin, Chemistry, 2015, 21, 15496-15501. [46] L. J. Liu, H. L. Zhao, J. M. Andino, Y. Li, ACS Catal., 2012, 2, 1817-1828. [47] N. Q. Wu, Nanoscale, 2018, 10, 2679-2696. [48] D. Agarwal, C. O. Aspetti, M. Cargnello, M. L. Ren, J. Yoo, C.B. Murray, R. Agarwal, Nano Lett., 2017, 17, 1839-1845. [49] R. A. van Santen, M. Neurock, S. G. Shetty, Chem. Rev., 2010, 110, 2005-2048. [50] H. Jiang, Z. Hou, Y. Luo, Angew. Chem. Int. Ed., 2017, 56, 15617-15621. [51] M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. X. Xu, X. L. Zheng, C. T. Dinh, F. J. Fan, C. H. Cao, F. P. Garciade Arquer, T. S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S. O. Kelly, E. H. Sargent, Nature, 2016, 537, 382-386. [52] L. Yu, G. Li, X. Zhang, X. Ba, G. D. Shi, Y. Li, P. K. Wong, J. C. Yu, Y. Yu, ACS Catal., 2016, 6, 6444-6454. [53] J. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev., 2010, 110, 6961-7001. [54] I. Prigogine, Adv. Chem. Phys., Volume 5. John Wiley & Sons, 2007, Inc. 353. [55] V. P. Indrakanti, J. D. Kubicki, H. H. Schobert, Energy Environ. Sci., 2009, 2, 745-758. [56] W. Hou, S. B. Cronin, Adv. Func. Mater., 2013, 23, 1612-1619. [57] A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3, 251-258. [58] D. C. Meier, D. W. Goodman, J. Am. Chem. Soc., 2004, 126, 1892-1899. [59] H. Nishi, T. Tatsuma, Angew. Chem. Int. Ed., 2016, 55, 10771-10775. [60] L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, N. J. Halas, Science, 2018, 362, 69-72. [61] L. Liang, F. Lei, S. Gao, Y. F. Sun, X. C. Jiao, J. Wu, S. Qamar, Y. Xie, Angew. Chem. Int. Ed., 2015, 54, 13971-13974. |
[1] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[2] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[3] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[4] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[5] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[6] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[7] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[8] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[9] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[10] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
[11] | Jiao Wang, Fangfang Zhu, Biyi Chen, Shuang Deng, Bochen Hu, Hong Liu, Meng Wu, Jinhui Hao, Longhua Li, Weidong Shi. B atom dopant-manipulate electronic structure of CuIn nanoalloy delivering wide potential activity over electrochemical CO2RR [J]. Chinese Journal of Catalysis, 2023, 49(6): 132-140. |
[12] | Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 117-126. |
[13] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[14] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[15] | Yan Wei, Ruizhi Duan, Qiaolan Zhang, Youzhi Cao, Jinyuan Wang, Bing Wang, Wenrui Wan, Chunyan Liu, Jiazang Chen, Hong Gao, Huanwang Jing. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 243-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||