Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (2): 249-258.DOI: 10.1016/S1872-2067(19)63450-9
• Articles • Previous Articles Next Articles
Qiang Haoa,b, Ci'an Xiea, Yongming Huanga, Daimei Chena, Yiwen Liub, Wei Weib, Bing-Jie Nib
Received:
2019-07-01
Revised:
2019-07-12
Online:
2020-02-18
Published:
2019-11-04
Supported by:
Qiang Hao, Ci'an Xie, Yongming Huang, Daimei Chen, Yiwen Liu, Wei Wei, Bing-Jie Ni. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles[J]. Chinese Journal of Catalysis, 2020, 41(2): 249-258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63450-9
[1] Y. Choi, M. S. Koo, A. D. Bokare, D. H. Kim, D. W. Bahnemann, W. Choi, Environ. Sci. Technol., 2017, 51, 3973-3981. [2] S. G. Kumar, K. S. R. K. Rao, Appl. Surf. Sci., 2017, 391, 124-148. [3] Y. Wang, H. Dai, J. Deng, Y. Liu, H. Arandiyan, X. Li, B. Gao, S. Xie, Solid State Sci., 2013, 24, 62-70. [4] H. J. Lu, R. T. Wang, L. H. Zhang, D. M. Chen, Q. Hao, C. Ma, W. Q. Yao, Russ. J. Phys. Chem. A, 2018, 92, 2075-2080. [5] K. M. Reza, A. S. W. Kurny, F. Gulshan, Appl. Water Sci., 2017, 7, 1569-1578. [6] Z. X. Zhao, H. X. Dai, J. G. Deng, Y. X. Liu, Y. Wang, X. W. Li, G. M. Bai, B. Z. Gao, C. T. Au, J. Environ. Sci., 2013, 25, 2138-2149. [7] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38. [8] W.-K. Jo, S. Kumar, M. A. Isaacs, A. F. Lee, S. Karthikeyan, Appl. Catal. B, 2017, 201, 159-168. [9] K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Water Res., 2016, 88, 428-448. [10] S. Liu, M. Y. Zhao, Z. T. He, Y. Zhong, H. Ding, D. M. Chen, Chin. J. Catal., 2019, 40, 446-457. [11] Z. Zou, J. Ye, K. Satama. H. Arakawa, Nature, 2001, 414, 625-627. [12] T. Chen, Q. Hao, W. J. Yang, C. L. Xie, D. M. Chen, C. Ma, W. Q. Yao, Y. F. Zhu, Appl. Catal. B, 2018, 237, 442-448. [13] Q. Hao, R. Wang, H. Lu, C. A. Xie, W. Ao, D. Chen, C. Ma, W. Yao, Y. Zhu, Appl. Catal. B, 2017, 219, 63-72. [14] H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao, Y. Zhu, Appl. Catal. B, 2018, 237, 59-67. [15] S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, R. Nakagaki, Appl. Catal. B, 2003, 46, 573-586. [16] S. Dong, Y. Cui, Y. Wang, Y. Li, L. Hu, J. Sun, J. Sun, Chem. Eng. J., 2014, 249, 102-110. [17] Q. Wang, J. Lian, Q. Ma, S. Zhang, J. He, J. Zhong, J. Li, H. Huang, B. Su, Catal. Today, 2017, 281, 662-668. [18] Y.-J. Yuan, Z. Li, S. Wu, D. Chen, L.-X. Yang, D. Cao, W.-G. Tu, Z.-T. Yu, Z.-G. Zou, Chem. Eng. J., 2018, 350, 335-343. [19] R. Suresh, K. Giribabu, R. Manigandan, R. V. Mangalaraja, J. Y. Solorza, A. Stephen, V. Narayanan, Solid State Sci., 2017, 68, 39-46. [20] K. Sekizawa, S. Sato, T. Arai, T. Morikawa, ACS Catal., 2018, 8, 1405-1416. [21] W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Chin. J. Catal., 2017, 38, 372-378. [22] Q. Hao, T. Chen, R. Wang, J. Feng, D. Chen, W. Yao, J. Clean. Prod., 2018, 197, 1222-1230. [23] Q. Hao, X. X. Niu, C. S. Nie, S. M. Hao, W. Zou, J. M. Ge, D. M. Chen, W. Q. Yao, Phys. Chem. Chem. Phys., 2016, 18, 31410-31418. [24] Q. Hao, S. M. Hao, X. X. Niu, X. Li, D. M. Chen, H. Ding, Chin. J. Catal., 2017, 38, 278-286. [25] J. Q. Wen, J. Xie, X. B. Chen, X. Li, Appl. Surf. Sci., 2017, 391, 72-123. [26] D. Masih, Y. Ma, S. Rohani, Appl. Catal. B, 2017, 206, 556-588. [27] Y. H. Fu, W. Liang, J. Q. Guo, H. Tang, S. S. Liu, Appl. Surf. Sci., 2018, 430, 234-242. [28] Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Solar Rrl, 2018, 2, 1800006. [29] W. J. Jiang, H. Wang, X. D. Zhang, Y. F. Zhu, Y. Xie, Sci. China-Chem., 2018, 61, 1205-1213. [30] D. Chen, K. Wang, W. Hong, R. Zong, W. Yao, Y. Zhu, Appl. Catal. B, 2015, 166, 366-373. [31] X. J. Wang, Q. Wang, F. T. Li, W. Y. Yang, Y. Zhao, Y. J. Hao, S. J. Liu, Chem. Eng. J., 2013, 234, 361-371. [32] Z. W. Tong, D. Yang, T. X. Xiao, Y. Tian, Z. Y. Jiang, Chem. Eng. J., 2015, 260, 117-125. [33] H. P. Li, J. Y. Liu, W. G. Hou, N. Du, R. J. Zhang, X. T. Tao, Appl. Catal. B, 2014, 160, 89-97. [34] F. T. Li, Y. Zhao, Q. Wang, X. J. Wang, Y. J. Hao, R. H. Liu, D. S. Zhao, J. Hazard. Mater., 2015, 283, 371-381. [35] F. J. Zhang, F. Z. Xie, S. F. Zhu, J. Liu, J. Zhang, S. F. Mei, W. Zhao, Chem. Eng. J., 2013, 228, 435-441. [36] F. Chen, H. Yang, X. Wang, H. Yu, Chin. J. Catal., 2017, 38, 296-304. [37] P. Wang, S. Xu, F. Chen, H. Yu, Chin. J. Catal., 2019, 40, 343-351. [38] N. C. Zheng, T. Ouyang, Y. B. Chen, Z. Wang, D. Y. Chen, Z. Q. Liu, Catal. Sci. Technol., 2019, 9, 1357-1364. [39] R. B. Wei, Z. L. Huang, G. H. Gu, Z. Wang, L. X. Zeng, Y. B. Chen, Z. Q. Liu, Appl. Catal. B, 2018, 231, 101-107. [40] D. S. Wang, C. H. Hao, W. Zheng, X. L. Ma, D. R. Chu, Q. Peng, Y. D. Li, Nano Res., 2009, 2, 130-134. [41] Y. Bessekhouad, D. Robert, J. V. Weber, J. Photochem. Photobio. A, 2004, 163, 569-580. [42] X. Gao, H. B. Wu, L. Zheng, Y. Zhong, Y. Hu, X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 5917-5921. [43] G. Konstantatos, L. Levina, J. Tang, E. H. Sargent, Nano Lett., 2008, 8, 4002-4006. [44] G. Chen, Y. Yu, K. Zheng, T. Ding, W. Wang, Y. Jiang, Q. Yang, Small, 2015, 11, 2848-2855. [45] K. L. Ai, Y. L. Liu, J. H. Liu, Q. H. Yuan, Y. Y. He, L. H. Lu, Adv. Mater., 2011, 23, 4886-4891. [46] P. Boudjouk, M. P. Remington, D. G. Grier, B. R. Jarabek, G. J. McCarthy, Inorg. Chem., 1998, 37, 3538-3541. [47] X. L. Yu, C. B. Cao, H. S. Zhu, Solid State Commun., 2005, 134, 239-243. [48] Z. Guo, S. Zhu, Y. Yong, X. Zhang, X. Dong, J. Du, J. Xie, Q. Wang, Z. Gu, Y. Zhao, Adv. Mater., 2017, 29, 1704136. [49] Z. Xiao, C. Xu, X. Jiang, W. Zhang, Y. Peng, R. Zou, X. Huang, Q. Liu, Z. Qin, J. Hu, Nano Res., 2016, 9, 1934-1947. [50] X. Zhou, S. Y. Yao, Y. M. Long, Z. S. Wang, W. F. Li, Mater. Lett., 2015, 145, 23-26. [51] D. D. Chen, J. Z. Fang, S. Y. Lu, G. Y. Zhou, W. H. Feng, F. Yang, Y. Chen, Z. Q. Fang, Appl. Surf. Sci., 2017, 426, 427-436. [52] J. Yin, Z. Y. Wu, M. Fang, Y. Xu, W. J. Zhu, C. Li, J. Chin. Chem. Soc., 2018, 65, 1044-1052. [53] P. Niu, L. L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater., 2012, 22, 4763-4770. [54] L. F. Lundegaard, E. Makovicky, T. Boffa-Ballaran, T. Balic-Zunic, Phys. Chem. Miner., 2005, 32, 578-584. [55] H. Jung, C. M. Park, H. J. Sohn, Electrochim. Acta, 2011, 56, 2135-2139. [56] W. G. Ma, D. X. Han, M. Zhou, H. Sun, L. N. Wang, X. D. Dong, L. Niu, Chem. Sci., 2014, 5, 3946-3951. [57] Q. Y. Lin, L. Li, S. J. Liang, M. H. Liu, J. H. Bi, L. Wu, Appl. Catal. B, 2015, 163, 135-142. [58] J. R. Holst, E. G. Gillan, J. Am. Chem. Soc., 2008, 130, 7373-7379. [59] B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, J. Am. Chem. Soc., 2003, 125, 10288-10300. [60] J. Grigas, E. Talik, V. Lazauskas, Phys. Status Solidi B, 2002, 232, 220-230. [61] F. M. Huang, L. Chen, H. L. Wang, Z. C. Yan, Chem. Eng. J., 2010, 162, 250-256. [62] Z. Gan, X. Wu, M. Meng, X. Zhu, L. Yang, P. K. Chu, ACS Nano, 2014, 8, 9304-9310. [63] R. T. Wang, Q. Hao, J. R. Feng, G. C. Wang, H. Ding, D. M. Chen, B. J. Ni, J. Alloys Compd., 2019, 786, 418-427. [64] M. Z. Xie, X. D. Fu, L. Q. Jing, P. Luan, Y. J. Feng, H. G. Fu, Adv. Energy Mater., 2014, 4, 1300995/1-1300995/6. [65] M. Humayun, Y. Qu, F. Raziq, R. Yan, Z. Li, X. Zhang, L. Jing, Environ. Sci. Technol., 2016, 50, 13600-13610. |
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[3] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[4] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[5] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
[6] | Yang Sun, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, Xiaowei Li. Recent advances in the development of bismuth-based materials for the photocatalytic reduction of hexavalent chromium in water [J]. Chinese Journal of Catalysis, 2023, 55(12): 20-43. |
[7] | Haibo Chi, Wangyin Wang, Jiangping Ma, Ruizhi Duan, Chunmei Ding, Rui Song, Can Li. A synchronous defluorination-oxidation process for efficient mineralization of fluoroarenes with photoelectrocatalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 171-181. |
[8] | Ziye Zheng, Shuang Tian, Yuxiao Feng, Shan Zhao, Xin Li, Shuguang Wang, Zuoli He. Recent advances of photocatalytic coupling technologies for wastewater treatment [J]. Chinese Journal of Catalysis, 2023, 54(11): 88-136. |
[9] | Ningning Wang, Shuo Wang, Can Li, Chenyang Li, Chunjiang Liu, Shanshan Chen, Fuxiang Zhang. ZrO2 modification of homogeneous nitrogen-doped oxide MgTa2O6-xNx for promoted photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2023, 54(11): 220-228. |
[10] | Weixu Liu, Chang He, Bowen Zhu, Enwei Zhu, Yaning Zhang, Yunning Chen, Junshan Li, Yongfa Zhu. Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight irradiation [J]. Chinese Journal of Catalysis, 2023, 53(10): 13-30. |
[11] | Yiming Lei, Jinhua Ye, Jordi García-Antón, Huimin Liu. Recent advances in the built-in electric-field-assisted photocatalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2023, 53(10): 72-101. |
[12] | Hui Yang, Kai Dai, Jinfeng Zhang, Graham Dawson. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications [J]. Chinese Journal of Catalysis, 2022, 43(8): 2111-2140. |
[13] | Yu-Lan Wu, Ming-Yu Qi, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites [J]. Chinese Journal of Catalysis, 2022, 43(7): 1851-1859. |
[14] | Aixia Wang, Linhe Zhang, Xuli Li, Yangqin Gao, Ning Li, Guiwu Lu, Lei Ge. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance [J]. Chinese Journal of Catalysis, 2022, 43(5): 1295-1305. |
[15] | Fangshuai Chen, Chongbei Wu, Gengfeng Zheng, Liangti Qu, Qing Han. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects [J]. Chinese Journal of Catalysis, 2022, 43(5): 1216-1229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||