Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (3): 375-389.DOI: 10.1016/S1872-2067(19)63492-3
• Reviews • Previous Articles Next Articles
Arif Alia, Chen Zhaoa,b
Received:
2019-06-02
Revised:
2019-08-02
Online:
2020-03-18
Published:
2019-11-19
Supported by:
Arif Ali, Chen Zhao. Direct liquefaction techniques on lignite coal: A review[J]. Chinese Journal of Catalysis, 2020, 41(3): 375-389.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63492-3
[1] C. Zhao, T. Brück, J. A. Lercher, Green Chem., 2013, 15, 1720-1739. [2] W. Li, L. Sun, L. Xie, X. Deng, N. Guan, L. Li, Chin. J. Catal., 2019, 40, 1255-1281. [3] A. Ali, B. Li, Y. Lu, C. Zhao, Green Chem., 2019, 21, 3059-3064. [4] C. Zhao, Y. Kou, A. A. Lemoniduo, X. Li, J. A. Lercher, Angew. Chem., Int. Ed., 2009, 48, 87-3990. [5] J. Kong, M. He, J. A. Lercher, C. Zhao, Chem. Commun., 2015, 51, 80-17583. [6] Z. Zheng, Z. Luo, C. Zhao, ChemCatChem, 2018, 10, 1376-1384. [7] Z. Luo, Z. Zheng, Y. Wang, G. Sun, H. Jiang, C. Zhao, Green Chem., 2016, 18, 5845-5858. [8] B. Ma, X. Yi, L. Chen, A. Zheng, C. Zhao, J. Mater. Chem. A, 2016, 4, 11330-11341. [9] (a) J. Zhang, C. Zhao, ACS Catal., 2016, 6, 4512-4525, (b) B. Peng, Y. Yao, C. Zhao, A. Lercher, Angew. Chem., Int. Ed., 2012, 51, 2072-2075. [10] Z. Luo, C. Zhao, Catal. Sci. Technol., 2016, 6, 3476-3484. [11] L. Wu, L. Li, B. Li, C. Zhao, Chem. Commun., 2017, 53, 6152-6155. [12] Z. Jingjing, C. Zhao, Chem. Commun., 2015, 51, 17249-17252. [13] Z. Wang, J. Hu, H. Shui, S. Ren, C. Wei, C. Pan, Z. Lei, X. Cui, Fuel, 2013, 109, 94-100. [14] X. Li, D. E. Priyanto, R. Ashida, K. Miura, Energy Fuels, 2015, 29, 3127-3133. [15] L. C. Yu, X. Y. Wei, Y. H. Wang, D. D. Zhang, Z. M. Wen, Z. Zong, X. Fan, Y. P. Zhao, W. Zhao, Y. L. Zhu, Fuel Process. Technol., 2014, 126, 131-137. [16] B. Wang, Y. Huang, J. Zhang, J. Anal. Appl. Pyrol., 2014, 110, 382-389. [17] X. Li, Z. Q. Bai, J. Bai, B. B. Zhao, P. Li, Y. N. Han, L. X. Kong, W. Li, Fuel Process. Technol., 2015, 133, 161-166. [18] X. Li, Y. Xue, J. Feng, Q. Yi, W. Li, X. Guo, K. Liu, Fuel, 2015, 144, 342-348. [19] J. Li, J. Yang, Z. Liu, Fuel Process. Technol., 2009, 90, 490-495. [20] P. Liu, L. Wang, Y. Zhou, T. Pan, X. Lu, D. Zhang, Fuel, 2016, 164, 110-118. [21] (a) Z. Wang, H. Shui, Z. Pei, J. Gao, Fuel, 2008, 87, 527-533, (b) Q. He, K. Wan, A. Hoadley, H. Yeasmin, Z. Miao, Fuel, 2015, 156, 121-128. [22] M. S. A. Perera, P. G. Ranjith, S. K. Choli, A. Bouazza, J. Kodikara, D. Airey, Environ. Earth Sci., 2011, 64, 223-235. [23] Y. Jianglong, T. Arash, H. Yanna, Y. Fengkui, L. Xianchun, Fuel Process. Technol., 2013, 105, 9-20. [24] R. C. Milici, Nat. Res. Res., 2009, 18, 85-94. [25] M. Widera, Act. Geo. Polon., 2015, 65, 367-378. [26] C. Zhang, X. He, S. Zhu, X. Wang, H. Zhuang, Comp. Society, 2011, 8, 1-4. [27] J. Hyashi, S. Kudo, H. S. Kim, K. Norinaga, K. Matsuoka, S. Hosokai, Energy Fuels, 2014, 28, 4-21. [28] P. Samuel, S. Maity, S. Khan, S. C. Roy, J. Sci. Ind. Res., 2008, 67, 1051-1058. [29] M. V. Kok, M. R. Pamir, Ana. Appl. Pyrolysis, 1995, 35, 145-156. [30] N. Nikolopoulos, I. Violidakis, E. Karampinis, M. Agraniotis, C. Bergins, P. Grammelis, E. Kakaras, Fuel, 2015155, 86-114. [31] P. J. Ashman, P. J. Mullinger, Fuel, 2005, 84, 1195-1205. [32] C. Z. Li, Fuel, 2007, 86, 1664-1683. [33] J. P. Mathews, A. L. Chaffee, Fuel, 2012, 96, 1-14. [34] B. Bielowics, J. R. Kasinski, Inter. J. Coal Geology, 2014, 131, 304-318. [35] N. Wijaya, L. Zhang, Energy Fuels, 2011, 25, 1-16. [36] H. Shui, Z. Cai, C. Xu, Energy Fuels, 2010, 3, 155-170. [37] E. Larson, T. Ren, Energy Sus. Develop., 2003, 7, 79-102. [38] N. Mallya, R. Zingaro, ACS symposium series, Oxford University Press., 1984, 133-144. [39] P. G. Hatcher, J. L. Faulon, K. A. Wenzel, G. D. Cody, Abstracts of papers of Am Chem Soc 115516TH ST, NW, Washington, DC 20036, 1992, 203, 93. [40] P. Tromp, J. Moulijn, Coal Sci. Springer, 1988, 305-338. [41] E. A. Wolfrum, Abstracts of Am. Chem. Soc., Washington, DC. 1983, 186, 44. [42] T. Vu, I. Yarovsky, A. Chaffee, 12th international conference on coal science and technology, 2005, 9-14. [43] G. Domazetis, B. D. James, Org. Geochem., 2006, 37, 244-259. [44] H. Kumagai, J. Hayashi, T. Chiba, K. Nakamura, Abstracts of Papers of Am. Chem. Soc., Washington, DC. 1999, 44, 633-637. [45] K. J. Hüttinger, A. W. Michenfelder, Fuel, 1987, 66, 1164-1165. [46] K. Iwata, H. Itoh, K. Ouchi, T. Yoshida, Fuel Process. Technol., 1980, 3, 221-229. [47] Y. F. Patrakov, V. F. Kamyanov, O. N. Fedyaeva, Fuel, 2005, 84, 189-199. [48] D. VanKrevelen, J. Schuyer, Amsterdam:Elsevier, 1957, 2852-2863 [49] J. H. Shinn, Fuel, 1984, 63, 87-96. [50] C. V. Philip, R. G. Anthony, ACS Symposium Series, 1984, 245, 257-270. [51] I. Wender, Catal. Rev. Sci. Eng., 1976, 14, 97-129. [52] P. R. Solomon, M. A. Serio, G. V. Despande, E. Kroo, Energy Fuels, 1990, 4, 42-54. [53] (a) F. Derbyshire, A. Davis, M. Epstein, P. Stansberry, Fuel, 1986, 65, 1233-1239, (b) F. Derbyshire, P. Stansberry, Fuel, 1987, 66, 1741-1742. [54] L. Huang, H. H. Schobert, Energy Fuels, 2005, 19, 200-207. [55] M. Godo, M. Saito, A. Ishihara, T. Kabe, Fuel, 1998, 77, 947-952. [56] Z. Wang, H. Shui, Z. Pei, J. Gao, Fuel, 2008, 87, 527-533. [57] K. Shimizu, H. Kawashima, Energy Fuels, 1999, 13, 1223-1229. [58] F. V. Stohl, H. P. Stephens, Ind. Eng. Chem. Res., 1987, 26, 2466-2473. [59] M. Polubentseva, V. Duganova, B. Bazhenov, G. Mikhailenko, Sol. Fuel. Chem., 1997, 31, 65-73. [60] Y. Shah, NASA STI Tech Report A 1981. [61] M. Onozaki, Y. Namiki, H. Ishibashi, M. Kobayashi, H. Itoh, M. Hiraide, S. Morooka, Fuel Process. Technol., 2000, 64, 253-269. [62] M. Kouzu, K. Koyama, M. Oneyama, T. Aramaki, T. Hayashi, M. Kobayashi, H. Itoh, H. Hattori, Fuel, 2000, 79, 365-371. [63] A. lrwin, H. Cochkran, O. Culberson, J. Fisher, W. Gambill, G. Oswald, R. Salmon, Oak Ridge National Laboratory (USA), ORNL/TM-9181, 1985. [64] C. Irwin, A. Sincali, E. Wong, Oak Ridge National Laboratory (USA). ORNL/MIT-326, 1981. [65] (a) C. Tsonopoulos, J. Heideman, S. Hwang, An Exxon Monograph, Wiley, New York, 1986, (b) J. A. Gray, C. J. Brady, J. R. Cunningham, J. R. Freeman, G. M. Wilson, Ind. Eng. Chem. Process. Des. Dev., 221983, 24, 97-107. [66] J. Cai, Y. Wang, Q. Huang, Fuel, 2008, 87, 3388-3392. [67] C. Song, H. Schobert, P. G. Hatcher, Energy Fuels, 1992, 6, 326-328. [68] L. Huang, H. H. Schobert, Energy Fuels, 2005, 19, 200-207. [69] A. G. Comolli, T. L. K. Lee, G. A. Popper, P. Zhou, Fuel Process. Technol., 1999, 59, 207-215. [70] L. Zhao, K. S. Gallagher, Energy Policy, 2007, 35, 6467-6477. [71] D. L. Cillo, G. J. Stiegel, R. E. Tischer, N. K. Narain, Fuel Process. Technol., 1985, 11, 273-287. [72] C. Bengoa, J. Font, A. Moros, A. Fortuny, A. Fabregat, F. Giralt, Fuel, 1996, 75, 1327-1330. [73] H. Karaca, K. Ceylan, Fuel, 2002, 81, 1767-1771. [74] L. Li, S. Huang, S. Y. Wu, Y. Q. Wu, J. S. Gao, Fuel Process. Technol., 2015, 138, 109-115. [75] Z. Lei, M. Liu, L. Gao, H. Shui, Z. Wang, S. Ren, Energy, 2011, 36, 3058-3062. [76] F. Zhang, D. Xu, Y. Wang, X. Guo, L. Xu, M. Fan, Appl. Energy, 2014, 130, 1-6. [77] Y. Xu, X. Sun, R. Song, D. Zhang, J. Gao, Energy Sources A, 2012, 34, 1695-1703. [78] P. N. Kuznetsov, V. I. Sharypov, M. G. Kurochkin, T. M. Pospelova, E. D. Kornietz, V. A. Trukhacheva, V. G. Chumakov, React. Kinet. Catal. Lett., 1989, 38, 255-260. [79] H. Karaca, C. Koyuno?lu, Energy Sources A, 2010, 32, 1167-1175. [80] Z. Lei, M. Liu, H. Shui, Z. Wang, X. Wei, Fuel Process. Technol., 2010, 91, 783-788. [81] H. Shui, W. Zhu, W. Wang, C. Pan, Z. Wang, Z. Lei, S. Ren, S. Kang, Fuel, 2015, 139, 516-522. [82] Z. Lei, Z. Hu, H. Zhang, L. Han, H. Shui, S. Ren, Z. Wang, S. Kang, C. Pan, Fuel, 2016, 166, 124-129. [83] Y. B. Wei, X. Y. Wei, L. C. Yu, P. Li, Z. M. Zong, W. Zhao, Energy Sources A, 2013, 35, 2302-2309. [84] J. Liu, X. Y. Wei, Y. G. Wang, D. D. Zhang, T. M. Wang, J. H. Lv, J. Gui, M. Qu, Z. M. Zong, Fuel, 2015, 142, 268-273. [85] G. Gürüz, N. Baç, H. Orbey, E. Inanç, M. S. Erdem, Fuel Sci. Technol. Int., 1991, 9, 1071-1085. [86] Y. Yürüm, J. Özkisacik, S. Bekta?, Petrol. Sci. Technol., 1990, 8, 1005-1019. [87] K. Y. Shi, X. X. Tao, S. D. Yin, Y. Du, Z. P. Lv, Proc. Earth Planet Sci., 2009, 1, 627-633. [88] M. Trautmann, S. Lang, Y. Traa, Fuel, 2015, 151, 102-109. [89] M. Stefanova, L. Gonsalvesh, S. Marinov, J. Czech, R. Carleer, J. Yperman, Fuel, 2016, 165, 324-330. [90] M. T. Erol, A. Olcay, Fuel Sci. Technol. Int., 1994, 12, 433-442. [91] C. X. Pan, X. Y. Wei, H. F. Shui, Z. C. Wang, J. Gao, C. Wei, X. Z. Cao, Z. M. Zong, Fuel, 2013, 109, 49-53. [92] D. He, J. Guan, H. Hu, Q. Zhang, Oil Shale, 2015, 32, 151-156. [93] Z. Wang, H. Shui, C. Pan, L. Li, S. Ren, Z. Lei, S. Kang, C. Wei, J. Hu, Fuel Process. Technol., 2014, 120, 8-15. [94] M. Ding, Y. P. Zhao, Y. Q. Dou, X. Y. Wei, X. Fan, J. P. Cao, Y. L. Wang, Z. M. Zong, Fuel Process. Technol., 2015, 135, 20-24. [95] J. Giralt, A. Fabregat, F. Giralt, Ind. Eng. Chem. Res., 1988, 27, 1110-1114. [96] Z. K. Li, Z. M. Zong, H. L.Yan, Z. H. Wei, Y. Li, X. Y. Wei, Fuel, 2015, 141, 268-274. [97] I. De-Marco, M. J. Chomón, J. A. Legarreta, A. Torres, Fuel Sci. Technol. Int., 1991, 9, 1123-1135. [98] C. Sathe, J. Hayashi, C. Z. Li, T. Chiba, Fuel, 2003, 82, 343-350. [99] J. Yan, Z. Bai, W. Li, J. Bai, Fuel, 2014, 136:280-286. [100] X. B. Feng, J. P. Cao, X. Y. Zhao, C. Song, T. L. Liu, J. X. Wang, X. Fan, X. Y. Wei, J. Anal. Appl. Pyrol., 2016, 117, 106-115. [101] S. N. Ali, M. F. Yusop, K. Ismail, Z. A. Ghani, M. F. Abdullah, M. A. M. Ishak, A. R. Mohamed, Energy Procedia, 2014, 52, 618-625. [102] R. J. Boucher, G. Standen, G. Eglinton, Fuel, 1991, 70, 695-702. [103] X. M. Yue, X. Y. Wei, B. Sun, Y. H. Wang, Z. M. Zong, X. Fan, Z. W. Liu, J. Appl. Catal. A, 2012, 425, 79-84. [104] H. Y. Lu, X. Y. Wei, R. Yu, Y. L. Peng, X. Z. Qi, L. M. Qie, Q. Wei, J. Lv, Z. M. Zong, W. Zhao, Y. P. Zhao, Z. H. Ni, L. Wu, Energy Fuels, 2011, 25, 2741-2745. [105] Z. P. Hu, D. Yang, Z. Wang, Z. Y. Yuan, Chin. J. Catal., 2019, 40, 1233-1254. |
[1] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[2] | Shihao Li, Jiafu Shi, Shusong Liu, Wenping Li, Yu Chen, Huiting Shan, Yuqing Cheng, Hong Wu, Zhongyi Jiang. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system [J]. Chinese Journal of Catalysis, 2023, 44(1): 96-110. |
[3] | Liangfeng Chen, Zhuo Wang, Peng Kang. Efficient photoelectrocatalytic CO2 reduction by cobalt complexes at silicon electrode [J]. Chinese Journal of Catalysis, 2018, 39(3): 413-420. |
[4] | Xinhua Gao, Jianli Zhang, Ning Chen, Qingxiang Ma, Subing Fan, Tiansheng Zhao, Noritatsu Tsubaki. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process [J]. Chinese Journal of Catalysis, 2016, 37(4): 510-516. |
[5] | LIN Jingdong*;LIAO Daiwei*;ZHANG Hongbin;WAN Huilin;TSAI Khirui. Deuterium Inverse Isotopic Effect in Ammonia Synthesis over Ru-Based and Fe-Based Catalysts [J]. Chinese Journal of Catalysis, 2010, 31(2): 153-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||