Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (3): 390-403.DOI: 10.1016/S1872-2067(19)63514-X
• Reviews • Previous Articles Next Articles
Fang Shia,b, Xuefeng Zhua, Weishen Yanga
Received:
2019-07-24
Revised:
2019-09-23
Online:
2020-03-18
Published:
2019-11-19
Supported by:
Fang Shi, Xuefeng Zhu, Weishen Yang. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries[J]. Chinese Journal of Catalysis, 2020, 41(3): 390-403.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63514-X
[1] D. U. Lee, P. Xu, Z. P. Cano, A. G. Kashkooli, M. G. Park, Z. Chen, J. Mater. Chem. A, 2016, 4, 7107-7134. [2] Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang, Adv. Energy Mater., 2017, 7, 1700544. [3] D. Chen, C. Chen, Z. M. Baiyee, Z. Shao, F. Ciucci, Chem. Rev., 2015, 115, 9869-9921. [4] Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang, Y. Wang, J. Zhang, Adv. Mater., 2018, 1803800. [5] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Phys. Chem. B, 2004, 108, 17886-17892. [6] M. Mukherjee, M. Samanta, P. Banerjee, K. K. Chattopadhyay, G. P. Das, Electrochim. Acta, 2019, 296, 528-534. [7] C. Deng, R. He, W. Shen, M. Li, T. Zhang, Phys. Chem. Chem. Phys., 2019, 21, 6900-6907. [8] S. Sharma, C. Zeng, A. A. Petersona, J. Chem. Phys., 2019, 150, 041704. [9] Y. Zhuang, J. Chou, P.-Y. Liu, T.-Y. Chen, J. Kai, A. Hu, H.-Y. T. Chen, J. Mater. Chem. A, 2018, 6, 23326-23335. [10] Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev., 2015, 442168-2201. [11] M. L. Liu, Z. P. Zhao, X. F. Duan, Y. Huang, Adv. Mater., 2019, 31, 1802234. [12] N. K. Chaudhari, J. Joo, B. Kim, B. Ruqia, S. Choi, K. Lee, Nanoscale, 2018,10, 20073-20088. [13] L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. Choi, J. Park, J. A. Herron, Z. Zie, M. Mavrikakis, Y. Xia, Science, 2015, 349, 412-416. [14] H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Mater. Chem. A, 2014, 2, 15704-15716. [15] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed., 2016, 55, 10800-10805. [16] L. Li, J. He, Y. Wang, X. Lv, X. Gu, P. Dai, D. Liu, X. Zhao, J. Mater. Chem. A, 2019, 7, 1964-1988. [17] S. Wang, X. Yan, K.-H. Wu, X. Chen, J.-M. Feng, P. Lu, H. Feng, H.-M. Cheng, J. Liang, S. X. Dou, Carbon, 2019, 144, 798-804. [18] W. Li, C. Min, F. Tan, Z. Li, B. Zhang, R. Si, M. Xu, W. Liu, L. Zhou, Q. Wei, Y. Zhang, X. Yang, ACS Nano, 2019, 13, 3177-3187. [19] H. Tan, J. Tang, J. Kim, Y. V. Kaneti, Y.-M. Kang, Y. Sugahara, Y. Yamauchi, J. Mater. Chem. A, 2019, 7, 1380-1393. [20] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365. [21] F. Lu, M. Zhou, Y. Zhou, X. Zeng, Small, 2017, 13, 1701931. [22] N. Mamaca, E. Mayousse, S. Arrii-Clacens, T.W. Napporn, K. Servat, N. Guillet, K.B. Kokoh, Appl. Catal. B:Environm., 2012, 111-112, 376-380. [23] T. Reier, M. Oezaslan, P. Strasser, ACS Catal., 2012, 2, 1765-177210. [24] Z.-W. Gao, J.-Y. Liu, X.-M. Chen, X.-L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W.-C. Wang, X.-W. Du, Adv. Mater., 2019, 31, 1804769. [25] B.-J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, T. J. Schmidt, J. Am. Chem. Soc., 2019, 141, 5231-5240. [26] S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, Z. Xu, Angew. Chem. Int. Ed., 2019, 58, 6042-6047. [27] C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev., 2016, 45, 517-531. [28] M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy, 2017, 37, 136-157. [29] W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci., 2015, 8, 1404-1427. [30] J. O. Bockris, T. Otagawa, J. Phys. Chem. A, 1983, 87, 2960-2971. [31] K. A. Stoerzinger, W. S. Choi, H. Jeen, H. N. Lee, Y. Shao-Horn, J. Phys. Chem. Lett., 2015, 6, 487-492. [32] J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, H. N. Lee, J. Am. Chem. Soc., 2016, 138, 2488-2491. [33] S. F. Yuk, V. R. Cooper, Phys. Chem. Chem. Phys., 2019, 21, 4738-4745. [34] S. K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater., 2019, 31, 1804297. [35] N. Jia, Q. Weng, Y. Shi, X. Shi, X. Chen, P. Chen, Z. An, Y. Chen, Nano Res., 2018, 11, 1905-1916. [36] Z. Cui, S. Wang, Y. Zhang, M. Cao, J. Power Sources, 2014, 259, 138-144. [37] L. Zhang, J. Niu, L. Dai, Z. Xia, Langmuir, 2012, 28, 7542-7550. [38] K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai, S.-Z. Qiao, Adv. Energy Mater., 2017, 7, 1602068. [39] L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem., Int. Ed., 2011, 50, 7132. [40] J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci., 2013, 6, 2839-2855. [41] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater., 2013, 25, 4932-4937. [42] Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater., 2016, 28, 9532-9538. [43] C. Tang, H. F. Wang, X. Chen, B. Q. Li, T. Z. Hou, B. Zhang, Q. Zhang, M. M. Titirici, F. Wei, Adv. Mater., 2016, 28, 6845-6851. [44] H. F. Wang, C. Tang, B, Wang, B. Q. Li, X. Cui, Q. Zhang, Energy Storage Mater., 2018, 15, 124-130. [45] H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today, 2016, 11, 601-625. [46] Y. Zhu, W. Zhou, Z. Shao, Small, 2017,13, 1603793. [47] J.-I. Jung, H. Y. Jeong, M. G. Kim, G. Nam, J. Park, J. Cho, Adv. Mater., 2015, 27, 266-271. [48] H. Liu, K. Zhu, Y. Liu, W. Li, L. Cai, X. Zhu, M. Cheng, W. Yang, Elec-trochim. Acta, 2018, 279, 224-230. [49] K. Zhu, H. Liu, X. Li, Q. Li, J. Wang, X. Zhu, W. Yang, Electrochim. Acta, 2017, 241, 433-439. [50] K. Zhu, H. Liu, M. Li, X. Li, J. Wang, X. Zhu, W. Yang, J. Mater. Chem. A, 2017, 5, 7753-7758. [51] Q. Wang, D. O'Hare, Chem. Rev., 2012, 112, 4124-4155. [52] G. Fan, F. Li, D. G. Evans, X. Duan, Chem. Soc. Rev., 2014, 437040-7066. [53] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater., 2018, 8, 1701905. [54] L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Y. Chen, Adv. Mater., 2017, 29, 1701410. [55] X. Fan, F. Kong, A. Kong, A. Chen, Z. Zhou, Y. Shan, ACS Appl. Mater. Interfaces, 2017, 9, 32840-32850. [56] T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater., 2018, 30, e1800757. [57] W.G. Hardin, D.A. Slanac, X. Wang, S. Dai, K.P. Johnston, K.J. Ste-venson, J. Phys. Chem. Lett., 2013, 4, 1254-1259. [58] M. Asnavandi, Y. Yin, Y. Li, C. Sun, C. Zhao, ACS Energy Lett., 2018, 3, 1515-1520 [59] K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu, W. Yang, J. Mater. Chem. A, 2017, 5, 19836-19845. [60] C.-F. Chen, G. King, R. M. Dickerson, P. A. Papin, S. Gupta, W. R. Kellogg, G. Wu, Nano Energy, 2015, 13, 423-432. [61] J. Du, T. Zhang, F. Cheng, W. Chu, Z. Wu, J. Chen, Inorg. Chem., 2014, 53, 9106-9114. [62] T. Ling, D. Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X. W. Du, Z. Hu, M. Jaroniec, S. Z. Qiao, Nat. Commun., 2016, 7, 12876. [63] X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li, H. Fu, Angew. Chem. Int. Ed., 2018, 57, 16166-16170. [64] Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu, L. Gu, Nanoscale, 2014, 6, 3540-3544. [65] T. Gao, Z. Jin, Y. Zhang, G. Tan, H. Yuan, D. Xiao, Electrochim. Acta, 2017, 258, 51-60. [66] G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater., 2014, 24, 5956-5961. [67] R. Nandan, K. K. Nanda, J. Mater. Chem. A, 2017, 5, 16843-16853. [68] G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang, F. Wei, Small, 2014, 10, 2251-2259. [69] Y. J. Li, L. Cui, P. F. Da, K. W. Qiu, W. J. Qin, W. B. Hu, X. W. Du, K. Davey, T. Ling, S. Z. Qiao, Adv. Mater., 2018, 30, e1804653. [70] Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu, S. Mu, ACS Nano, 2018, 12, 1894-1901. [71] Y. Tang, R. Liu, S. Liu, B. Zheng, Y. Lu, R. Fu, D. Wu, M. Zhang, M. Rong, Carbon, 2019, 141, 704-711. [72] K. Li, D. Guo, J. Kang, B. Wei, X. Zhang, Y. Chen, ACS Sustain. Chem. Eng., 2018, 6, 14641-14651. [73] X. Wang, L. Yu, B. Y. Guan, S. Song, X. W. D. Lou, Adv. Mater., 2018, 30, 1801211. [74] W. Xiang, Y. Zhao, Z. Jiang, X. Li, H. Zhang, Y. Sun, Z. Ning, F. Du, P. Gao, J. Qian, K. Kato, M. Yamauchi, Y. Sun, J. Mater. Chem. A, 2018, 6, 23366-23377. [75] S. A. Chala, M.-C. Tsai, W.-N. Su, K. B. Ibrahim, A. D. Duma, M.-H. Yeh, C.-Y. Wen, C.-H. Yu, T.-S. Chan, H. Dai, B.-J. Hwang, ACS Catal., 2018, 9, 117-129. [76] Z. Wang, J. Ang, B. Zhang, Y. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Che, Y. Huang, X. Lu, Appl. Catal. B, 2019, 254, 26-36. [77] Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y. Z. Su, Adv. Mater., 2016, 28, 3777-3784. [78] K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, W. Yang, Chem. Commun., 2016, 52, 11803-11806. [79] Y. Wu, X. Qiu, F. Liang, Q. Zhang, A. Koo, Y. Dai, Y. Lei, X. Sun, Appl. Catal. B, 2019, 241, 407-414. [80] L. Dong, J. Su, Y. Wang, Y. Zhang, X. Chen, S. Zhou, J. Zang, Catal. Commun., 2019, 129, 105742. [81] K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Ed., 2019, 58, 1252-1265. |
[1] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[2] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[3] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[4] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[5] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[6] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[7] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[8] | Tianmi Tang, Yin Wang, Jingyi Han, Qiaoqiao Zhang, Xue Bai, Xiaodi Niu, Zhenlu Wang, Jingqi Guan. Dual-atom Co-Fe catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 46(3): 48-55. |
[9] | Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery [J]. Chinese Journal of Catalysis, 2023, 46(3): 36-47. |
[10] | Xuan Liu, Jiashun Liang, Qing Li. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells [J]. Chinese Journal of Catalysis, 2023, 45(2): 17-26. |
[11] | Yao Wu, Jiefu Yang, Mei Zheng, Dianyi Hu, Teddy Salim, Bijun Tang, Zheng Liu, Shuzhou Li. Two-dimensional cobalt ferrite through direct chemical vapor deposition for efficient oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 55(12): 265-277. |
[12] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[13] | Liqing Wu, Qing Liang, Jiayi Zhao, Juan Zhu, Hongnan Jia, Wei Zhang, Ping Cai, Wei Luo. A Bi-doped RuO2 catalyst for efficient and durable acidic water oxidation [J]. Chinese Journal of Catalysis, 2023, 55(12): 182-190. |
[14] | Xue Bai, Jingyi Han, Siyu Chen, Xiaodi Niu, Jingqi Guan. Improvement of oxygen evolution activity on isolated Mn sites by dual-heteroatom coordination [J]. Chinese Journal of Catalysis, 2023, 54(11): 212-219. |
[15] | Zhechen Fan, Hao Wan, Hao Yu, Junjie Ge. Rational design of Fe-M-N-C based dual-atom catalysts for oxygen reduction electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 54(11): 56-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||