Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (3): 415-425.DOI: 10.1016/S1872-2067(19)63463-7
• Articles • Previous Articles Next Articles
Jinhua Zhanga,b, Yuanbin Shea
Received:
2019-06-18
Revised:
2019-07-26
Online:
2020-03-18
Published:
2019-11-19
Supported by:
Jinhua Zhang, Yuanbin She. Unveiling the decomposition mechanism of formic acid on Pd/WC(0001) surface by using density function theory[J]. Chinese Journal of Catalysis, 2020, 41(3): 415-425.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63463-7
[1] K. J. Jeong, C. M. Miesse, J. H. Choi, J. Lee, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, T. G. Lee, J. Power Sources, 2007, 168, 119-125. [2] X. W. Yu, P. G. Pickup, J. Power Sources, 2008, 182, 124-132. [3] Q. Lv, Q. L. Meng, W. W. Liu, N. Sun, K. Jiang, L. P. Ma, Z. Q. Peng, W. B. Cai, C. P. Liu, J. J. Ge, L. M. Liu, W. Xing, J. Phys. Chem. C, 2018, 122, 2081-2088. [4] J. W. Cho, S. Lee, S. P. Yoon, J. Han, S. W. Nam, K. Y. Lee, H. C. Ham, ACS Catal., 2017, 7, 2553-2562. [5] W. H. Wang, T. He, X. H. Liu, W. N. He, H. J. Cong, Y. B. Shen, L. M. Yan, X. T. Zhang, J. P. Zhang, X. C. Zhou, ACS Appl. Mater. Interfaces, 2016, 8, 20839-20848. [6] S. Lee, J. Cho, J. H. Jang, J. Han, S. P. Yoon, S. W. Nam, T. H. Lim, H. C. Ham, ACS Catal., 2016, 6, 134-142. [7] W. Y. Yu, G. M. Mullen, D. W. Flaherty, C. B. Mullins, J. Am. Chem. Soc., 2014, 136, 11070-11078. [8] J. Cho, S. Lee, J. Han, S. P. Yoon, S. W. Nam, S. H. Choi, K. Y. Lee, H. C. Ham, J. Phys. Chem. C, 2014, 118, 22553-22560. [9] K. Mori, M. Dojo, H. Yamashita, ACS Catal., 2013, 3, 1114-1119. [10] Z. F. Wu, Z. Q. Jiang, Y. K. Jin, F. Xiong, G. H. Sun, W. X. Huang, Chin. J. Catal., 2016, 37, 1738-1746. [11] R. Sang, P. Kucmierczyk, K. W. Dong, R. Franke, H. Neumann, R. Jackstell, M. Beller, J. Am. Chem. Soc., 2018, 140, 5217-5223. [12] W. F. Wang, Y. F. Zhang, J. Q. Li, K. N. Ding, Chin. J. Catal., 2004, 25, 129-132. [13] W. Z. Yu, Z. L. Xin, W. Zhang, Y. A. Xie, J. Wang, S. Niu, Y. F. Wu, L. D. Shao, Chem. Phys. Lett., 2017, 686, 155-160. [14] X. B. Li, Y. Y. Zhu, G. Chen, G. H. Yang, Z. Wu, B. Sunden, Int. J. Hy-drogen Energy, 2017, 42, 24726-24736. [15] R. G. Zhang, M. Yang, M. Peng, L. X. Ling, B. J. Wang, Appl. Surf. Sci., 2019, 465, 730-739. [16] E. Cazares-Avila, E. J. Ruiz-Ruiz, A. Hernandez-Ramirez, F. J. Rodriguez-Varela, M. D. Morales-Acosta, D. Morales-Acosta, Int. J. Hydrogen Energy, 2017, 42, 30349-30358. [17] J. Scaranto, M. Mavrikakis, Surf. Sci., 2016, 650, 111-120. [18] J. Y. Wang, H. X. Zhang, K. Jiang, W. B. Cai, J. Am. Chem. Soc., 2011, 133, 14876-14879. [19] D. W. Yuan, Y. Zhang, Appl. Surf. Sci., 2018, 462, 649-658. [20] W. Gao, J. A. Keith, J. Anton, T. Jacob, J. Am. Chem. Soc., 2010, 132, 18377-18385 [21] Y. Y. Wang, P. Liu, D. J. Zhang, C. B. Liu, Int. J. Hydrogen Energy, 2016, 41, 7342-7351. [22] L. H. Ou, J. X. Chen, Y. D. Chen, J. L. Jin, J. Phys. Chem. C, 2018, 122, 24871-24884. [23] W. Gao, J. A. Keith, J. Anton, T. Jacob, J. Am. Chem. Soc., 2010, 132, 18377-18385. [24] Y. F. Wang, K. Li, G. C. Wang, Appl. Surf. Sci., 2018, 436, 631-638. [25] Y. Y. Wang, Y. Y. Qi, D. J. Zhang, C. B. Liu, J. Phys. Chem. C, 2014, 118, 2067-2076. [26] J. W. Zhang, M. S. Chen, H. Q. Li, Y. J. Li, J. Y. Ye, Z. M. Cao, M. L. Fang, Q. Kuang, J. Zheng, Z. X. Xie, Nano Energy, 2018, 44, 127-134. [27] K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. J. Bagot, E. A. Marquis, G. D. W. Smith, S. C. E. Tsang, Nat. Nanotechnol., 2011, 6, 302-307. [28] S. Uhm, H. J. Lee, Y. Kwon, J. Lee, Angew. Chem. Int. Ed., 2008, 47, 10163-10166. [29] J. Y. Wang, Y. Y. Kang, H. Yang, W. B. Cai, J. Phys. Chem. C, 2009, 113, 8366-8372. [30] H. X. Zhang, C. Wang, J. Y. Wang, J. J. Zhai, W. B. Cai, J. Phys. Chem. C, 2010, 114, 6446-6451. [31] R. B. Levy, M. Boudart, Science, 1973, 181, 547-549. [32] N. R. Elezovic, P. Zabinski, P. Ercius, M. Wytrwal, V. R. Radmi-lovic, U. C. Lacnjevac, N. V. Krstajic, Electrochim. Acta, 2017, 247, 674-684. [33] Q. Zhang, Z. J. Mellinger, Z. Jiang, X. Chen, B. Wang, B. Y. Tian, Z. X. Liang, J. G. G. Chen, J. Electrochem. Soc., 2018, 165, J3031-J3038. [34] Z. Yan, Y. Gu, W. Wei, Z. Jiang, J. Xie, P. K. Shen, Fuel Cells, 2015, 15, 256-261. [35] J. S. Moon, Y. W. Lee, S. B. Han, K. W. Park, Int. J. Hydrogen Energy, 2014, 39, 7798-7804. [36] Y. X. Zhang, Z. X. Yang, J. Alloys Compd., 2019, 775, 330-334. [37] D. V. Esposito, J. G. G. Chen, Energy Environ. Sci., 2011, 4, 3900-3912. [38] Z. J. Mellinger, T. G. Kelly, J. G. G. Chen, ACS Catal., 2012, 2, 751-758. [39] N. R. Elezovic, P. Zabinski, P. Ercius, M. Wytrwal, V. R. Radmi-lovic, U. ?. La?njevac, N. V. Krstajic, Electrochim. Acta, 2017, 247, 674-684. [40] X. L. Zhang, Z. S. Lu, Z. X. Yang, J. Power Sources, 2016, 321, 163-173. [41] C. Y. He, J. Z. Tao, Y. B. Ke, Y. F. Qiu, RSC Adv., 2015, 5, 66695-66703. [42] M. Yin, Q. F. Li, J. O. Jensen, Y. J. Huang, L. N. Cleemann, N. J. Bjer-rum, W. Xing, J. Power Sources, 2012, 219, 106-111. [43] S. D. Guo, X. C. Hu, J. G. Yang, H. Chen, Y. Zhou, J. Fuel Chem. Tech-nol., 2016, 44, 698-702. [44] S. J. Li, X. Zhou, W. Q. Tian, J. Phys. Chem. A, 2012, 116, 11745-11752. [45] B. Delley, J. Chem. Phys., 2000, 113, 7756-7764. [46] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868. [47] Z. Fang, Y. Zhao, H. Y. Wang, J. F. Wang, S. J. Zhu, Y. Jia, J. Y. Cho, S. K. Guan, Appl. Surf. Sci., 2019, 470, 893-898. [48] K. Palotás, I. Bakó, L. Bugyi, Appl. Surf. Sci., 2016, 389, 1094-1103. [49] C. Q. Hu, S. W. Ting, K. Y. Chan, W. Huang, Int. J. Hydrogen Energy, 2012, 37, 15956-15965. [50] S. D. Zhou, C. Qian, X. Z. Chen, Catal. Lett., 2011, 141, 726-734. [51] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225-232. [52] X. L. Zhang, Z. X. Yang, R. Q. Wu, Nanoscale, 2018, 10, 4753-4760. [53] Y. F. Li, Y. M. Gao, B. Xiao, T. Min, Z. J. Fan, S. Q. Ma, D. W. Yi, Comp. Mater. Sci., 2011, 50, 939-948. [54] D. W. Yuan, J. Y. Li, L. H. Liu, Catal. Lett., 2016, 146, 2348-2356. [55] R. B. Jiang, W. Y. Guo, M. Li, X. Q. Lu, J. Y. Yuan, H. H. Shan, Phys. Chem. Chem. Phys., 2010, 12, 7794-7803. [56] J. Scaranto, M. Mavrikakis, Surf. Sci., 2016, 648, 201-211. [57] R. G. Zhang, H. Y. Liu, B. J. Wang, L. X. Ling, J. Phys. Chem. C, 2012, 116, 22266-22280. |
[1] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[2] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[3] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[4] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[5] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[6] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[7] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[8] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[9] | Chengcheng Chen, Fangting Liu, Qiaoyu Zhang, Zhengguo Zhang, Qiong Liu, Xiaoming Fang. Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 46(3): 91-102. |
[10] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[11] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[12] | Nan Li, Chuanyi Wang, Ke Zhang, Haiqin Lv, Mingzhe Yuan, Detlef W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NOx [J]. Chinese Journal of Catalysis, 2022, 43(9): 2363-2387. |
[13] | Yijing Gao, Shijie Zhang, Xiang Sun, Wei Zhao, Han Zhuo, Guilin Zhuang, Shibin Wang, Zihao Yao, Shengwei Deng, Xing Zhong, Zhongzhe Wei, Jian-guo Wang. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2022, 43(7): 1860-1869. |
[14] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
[15] | Shu-Mei Xia, Zhi-Wen Yang, Kai-Hong Chen, Ning Wang, Liang-Nian He. Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1642-1651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||