Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (3): 464-473.DOI: 10.1016/S1872-2067(19)63474-1
• Articles • Previous Articles Next Articles
Zeqing Long, Guang Xian, Guangming Zhang, Tao Zhang, Xuemei Li
Received:
2019-06-14
Revised:
2019-08-02
Online:
2020-03-18
Published:
2019-11-19
Supported by:
Zeqing Long, Guang Xian, Guangming Zhang, Tao Zhang, Xuemei Li. BiOCl-Bi12O17Cl2 nanocomposite with high visible-light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical[J]. Chinese Journal of Catalysis, 2020, 41(3): 464-473.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63474-1
[1] Y. Zhang, M. Sivakumar, S. Yang, K. Enever, M. Ramezanianpour, Desalination, 2018, 428, 116-145. [2] D. Liu, J. Ma, R. Long, C. Gao, Y. Xiong, Nano Today, 2017, 17, 96-116. [3] C. Zhang, Y. Li, D. Shuai, Y. Shen, D. Wang, Chem. Eng. J., 2019, 355, 399-415. [4] Y. Wei, J. Zhu, Y. Gan, G. Cheng, Adv. Powder Technol., 2018, 29, 2289-2311. [5] P. Vishnukumar, S. Vivekanandhan, M. Misra, A.K. Mohanty, Mater. Sci. Semicond. Process., 2018, 80, 143-161. [6] W. Leng, Environ. Sci. Technol., 2011, 45, 3181-3182. [7] S. K. Jayaraj, V. Sadishkumar, T. Arun, P. Thangadurai, Mater. Sci. Semicond. Process., 2018, 85, 122-133. [8] F. De Angelis, C. Di Valentin, S. Fantacci, A. Vittadini, A. Selloni, Chem. Rev., 2014, 114, 9708-9753. [9] Z. Huang, Z. Gao, S. Gao, Q. Wang, Z. Wang, B. Huang, Y. Dai, Chin. J. Catal., 2017, 38, 821-830. [10] X. Wang, R. Yu, K. Wang, G. Yang, H. Yu, Chin. J. Catal., 2015, 36, 1211-2218. [11] Y. Wu, Z. Liu, Y. Li, J. Chen, X. Zhu, P. Na, Chin. J. Catal., 2019, 40, 60-69. [12] R. Jiang, D. Wu, G. Lu, Z. Yan, J. Liu, Chemosphere, 2019, 227, 82-92. [13] X. Li, W. Zhang, W. Cui, J. Li, Y. Sun, G. Jiang, H. Huang, Y. Zhang, F. Dong, Chem. Eng. J., 2019, 370, 1366-1375. [14] Y. Sun, H. Wang, Q. Xing, W. Cui, J. Li, S. Wu, L. Sun, Chin. J. Catal., 2019, 40, 647-655. [15] Y. Sun, J. Liao, F. Dong, S. Wu, L. Sun, Chin. J. Catal., 2019, 40, 362-370. [16] Y. Yang, C. Zhang, C. Lai, G. Zeng, D. Huang, M. Cheng, J. Wang, F. Chen, C. Zhou, W. Xiong, Adv. Colloid Interface Sci., 2018, 254, 76-93. [17] R. Jiang, D. Wu, G. Lu, Z. Yan, J. Liu, R. Zhou, M. Nkoom, J. Taiwan Inst. Chem. Eng., 2019, 96, 681-690. [18] Q. Wang, J. Hui, Y. Huang, Y. Ding, Y. Cai, S. Yin, Z. Li, B. Su, Mater. Sci. Semicond. Process., 2014, 17, 87-93. [19] J. Xia, L. Xu, J. Zhang, S. Yin, H. Li, H. Xu, J. Di, CrystEngComm, 2013, 15, 10132-10141. [20] Z. Cui, X. Dong, Y. Sun, Y. Zhou, Y. Zhang, F. Dong, Nanoscale, 2018, 10, 16928-16934. [21] M. Zhao, L. Dong, Q. Zhang, H. Dong, C. Li, H. Tang, Powder Diffr., 2015, 31, 2-7. [22] W. Gu, J. Xu, F. Teng, Z. Ul Abideen, ChemistrySelect., 2018, 3, 10721-10726. [23] P. Cui, J. Wang, Z. Wang, J. Chen, X. Xing, L. Wang, R. Yu, Nano Res., 2016, 9, 593-601. [24] K. L. Li, W. W. Lee, C. S. Lu, Y. M. Dai, S. Y. Chou, H. L. Chen, H. P. Lin, C. C. Chen, J. Taiwan Inst. Chem. Eng., 2014, 45, 2688-2697. [25] G. He, C. Xing, X. Xiao, R. Hu, X. Zuo, J. Nan, Appl. Catal. B Environ., 2015, 170-171, 1-9. [26] L. Hao, H. Huang, Y. Guo, X. Du, Y. Zhang, Appl. Surf. Sci., 2017, 420, 303-312. [27] S. Chong, G. Zhang, N. Zhang, Y. Liu, J. Zhu, T. Huang, S. Fang, Ultrason. Sonochem., 2016, 32, 231-240. [28] Y. Chen, L. P. Sun, Z, H. Liu, G. Martin, Z. Sun, Top. Curr. Chem., 2017, 375, 1-38. [29] X. Xiao, J. Jiang, L. Zhang, Appl. Catal. B Environ., 2013, 142-143, 487-493. [30] J. Cheng, S. Shi, T. Tang, S. Tian, W. Yang, D. Zeng, J. Alloys Compd., 2015, 643, 159-166. [31] C. Bi, J. Cao, H. Lina, Y. Wang, S. Chen, Appl. Catal. B Environ., 2016, 195, 132-140. [32] Y. Huang, Y. He, M. Cui, Q. Nong, J. Yu, F. Wu, X. Meng, Catal. Commun., 2016, 76, 19-22. [33] W. Zhang, X. Dong, B. Jia, J. Zhong, Y. Sun, F. Dong, Appl. Surf. Sci., 2018, 430, 571-577. [34] S. Ning, L. Ding, Z. Lin, Q. Lin, H. Zhang, H. Lin, J. Long, X. Wang, Appl. Catal. B Environ., 2016, 185, 203-212. [35] X. Zhang, L. Zhao, C. Fan, Z. Liang, P. Han, Comput. Mater. Sci., 2012, 61, 180-184. [36] H. Chai, Z. Zhang, Y. Zhou, L. Zhu, H. Lv, N. Wang, Chemosphere, 2018, 207, 41-49. [37] K. Ji, H. Dai, J. Deng, H. Zang, H. Arandiyan, S. Xie, H. Yang, Appl. Catal. B Environ., 2015, 168-169, 274-282. [38] Y. Li, Q. Wang, B. Liu, J. Zhang, Appl. Surf. Sci., 2015, 349, 957-969. [39] L. Zhang, T. Chen, S. Zeng, H. Su, J. Environ. Chem. Eng., 2016, 4, 2785-2794. [40] S. Tu, H. Huang, T. Zhang, Y. Zhang, Appl. Catal. B Environ., 2017, 219, 550-562. [41] R. J. Wood, J. Lee, M. J. Bussemaker, Ultrason. Sonochem. 2017, 38, 351-370. [42] F. Tian, Y. Zhang, G. Li, Y. Liu, R. Chen, New J. Chem., 2015, 39, 1274-1280. [43] W. Zhang, X. Dong, Y. Liang, Y. Sun, F. Dong, Appl. Surf. Sci., 2018, 455, 236-243. [44] J. Zheng, F. Chang, M. Jiao, Q. Xu, B. Deng, X. Hu, J. Colloid Interface Sci., 2018, 510, 20-31. [45] X. Xiao, R. Hu, C. Liu, C. Xing, C. Qian, X. Zuo, J. Nan, L. Wang, Appl. Catal. B Environ., 2013, 140-141, 433-443. [46] Y. Ma, Y. Chen, Z. Feng, L. Zeng, Q. Chen, R. Jin, Y. Lu, Y. Huang, Y. Wu, Y. He, J. Water Process Eng., 2017, 18, 65-72. [47] J. Li, S. Sun, R. Chen, T. Zhang, B. Ren, D.D. Dionysiou, Z. Wu, X. Liu, M. Ye, Environ. Sci. Pollut. Res., 2017, 24, 9556-9565. [48] F. Wu, F. Chang, J. Zheng, M. Jiao, B. Deng, X. Hu, X. Liu, J. Inorg. Organomet. Polym. Mater., 2018, 28, 721-730. [49] F. Chang, F. Wu, W. Yan, M. Jiao, J. Zheng, B. Deng, X. Hu, Ultrason. Sonochem., 2019, 50, 105-113. [50] B. Banerjee, Ultrason. Sonochem., 2017, 82, 755-790. [51] L. Shi, J. Ma, L. Yao, L. Cui, W. Qi, J. Colloid Interface Sci., 2018, 519, 1-10. [52] X. Liu, Y. Xing, Z. Liu, C. Du, J. Mater. Sci., 2018, 53, 14217-14230. [53] Z. Yu, L. Xiang, F. Zhong, Y. Li, C. Mo, Q. Cai, X. Huang, X. Wu, J. Inorg. Mater., 2015, 30, 535-541. [54] J. Song, H. Wang, Y. Li, X. Zhu, L. Li, J. Yang, B. Jin, Sci. Sin. Chim., 2013, 43, 163-170. [55] D. Mao, A. Yu, S. Ding, F. Wang, S. Yang, C. Sun, H. He, Y. Liu, K. Yu, Appl. Surf. Sci., 2016, 389, 742-750. [56] Y. H. Lee, Y. M. Dai, J. Y. Fu, C. C. Chen, Mol. Catal., 2017, 432, 196-209. |
[1] | Han-Zhi Xiao, Bo Yu, Si-Shun Yan, Wei Zhang, Xi-Xi Li, Ying Bao, Shu-Ping Luo, Jian-Heng Ye, Da-Gang Yu. Photocatalytic 1,3-dicarboxylation of unactivated alkenes with CO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 222-228. |
[2] | Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation [J]. Chinese Journal of Catalysis, 2023, 46(3): 125-136. |
[3] | Yuyan Qiao, Yanqiu Pan, Jiangwei Zhang, Bin Wang, Tingting Wu, Wenjun Fan, Yucheng Cao, Rashid Mehmood, Fei Zhang, Fuxiang Zhang. Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst [J]. Chinese Journal of Catalysis, 2022, 43(9): 2354-2362. |
[4] | Xiaohui Sun, Nuzahat Habibul, Hong Du. Co0.85Se magnetic nanoparticles supported on carbon nanotubes as catalyst for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2021, 42(1): 235-243. |
[5] | Yunqing Liu, Peiyu Xia, Lingyu Li, Xinyue Wang, Jiaqi Meng, Yuxin Yang, Yihang Guo. In-situ route for the graphitized carbon/TiO2 composite photocatalysts with enhanced removal efficiency to emerging phenolic pollutants [J]. Chinese Journal of Catalysis, 2020, 41(9): 1378-1392. |
[6] | Shunji Xie, Haikun Zhang, Guodong Liu, Xuejiao Wu, Jinchi Lin, Qinghong Zhang, Ye Wang. Tunable localized surface plasmon resonances in MoO3-x-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light [J]. Chinese Journal of Catalysis, 2020, 41(7): 1125-1131. |
[7] | Yangdong Wang, Jing Shi, Zhonghao Jin, Zaiku Xie. Focus on the Chinese revolution of catalysis based on catalytic solutions for the vital demands of society and economy [J]. Chinese Journal of Catalysis, 2018, 39(7): 1147-1156. |
[8] | Ning An, Yuwei Ma, Juming Liu, Huiyan Ma, Jucai Yang, Qiancheng Zhang. Enhanced visible-light photocatalytic oxidation capability of carbon-doped TiO2 via coupling with fly ash [J]. Chinese Journal of Catalysis, 2018, 39(12): 1890-1900. |
[9] | Guanghui Yue, Jiandi Liu, Jiangtao Han, Donghui Qin, Qiang Chen, Jianxiong Shao. Amorphous CoSnO3@rGO nanocomposite as an efficient cathode catalyst for long-life Li-O2 batteries [J]. Chinese Journal of Catalysis, 2018, 39(12): 1951-1959. |
[10] | Mahmoud Nasrollahzadeh, Mohaddeseh Sajjadi, S. Mohammad Sajadi. Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes [J]. Chinese Journal of Catalysis, 2018, 39(1): 109-117. |
[11] | Chong Liu, Fazal Raziq, Zhijun Li, Yang Qu, Amir Zada, Liqiang Jing. Synthesis of TiO2/g-C3N4 nanocomposites with phosphate-oxygen functional bridges for improved photocatalytic activity [J]. Chinese Journal of Catalysis, 2017, 38(6): 1072-1078. |
[12] | Ezzat Rafiee, Maryam Khodayari. Synthesis and characterization of PMoV/Fe3O4/g-C3N4 from melamine: An industrial green nanocatalyst for deep oxidative desulfurization [J]. Chinese Journal of Catalysis, 2017, 38(3): 458-468. |
[13] | Xin Zhou, Jing Zou, Sheng Zhang, Ming Pan, Wanyun Gong. Preparation and application of g-C3N4-ZnS-DNA nanocomposite with enhanced electrocatalytic activity [J]. Chinese Journal of Catalysis, 2017, 38(2): 287-295. |
[14] | Shafaq Sahar, Akif Zeb, Yanan Liu, Naseeb Ullah, Anwu Xu. Enhanced Fenton, photo‐Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites [J]. Chinese Journal of Catalysis, 2017, 38(12): 2110-2119. |
[15] | N. Thirugnanam, Huaibing Song, Yan Wu. Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation [J]. Chinese Journal of Catalysis, 2017, 38(12): 2150-2159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||