Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (3): 485-493.DOI: 10.1016/S1872-2067(19)63487-X
• Articles • Previous Articles Next Articles
Yan Zhanga, Hui Hub, Jia Jua, Qianqian Yanb, Vasanthakumar Arumugamb, Xuechao Jingc, Huaqiang Caia, Yanan Gaob
Received:
2019-06-29
Revised:
2019-07-25
Online:
2020-03-18
Published:
2019-11-19
Yan Zhang, Hui Hu, Jia Ju, Qianqian Yan, Vasanthakumar Arumugam, Xuechao Jing, Huaqiang Cai, Yanan Gao. Ionization of a covalent organic framework for catalyzing the cycloaddition reaction between epoxides and carbon dioxide[J]. Chinese Journal of Catalysis, 2020, 41(3): 485-493.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63487-X
[1] J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev., 2012, 41, 2308-2322. [2] Q. Chen, M. Luo, P. Hammershoj, D. Zhou, Y. Han, B. W. Laursen, C. G. Yan, B. H. Han, J. Am. Chem. Soc., 2012, 134, 6084-6087. [3] W. J. Xue, Z. J. Li, H. L. Huang, Q. Y. Yang, D. H. Liu, Q. Xu, C. L. Zhong, Chem. Eng. Sci., 2016, 140, 1-9. [4] J. Wang, Y. Lin, Q. Yue, K. Tao, C. Kong, L. Chen, RSC Adv., 2016, 6, 53017-53024. [5] M. Liu, K. Gao, L. Liang, J. Sun, L. Sheng, M. Arai, Catal. Sci. Tech-nol., 2016, 6, 6406-6416. [6] Q. He, J. W. O'Brien, K. A. Kitselman, L. E. Tompkins, G. C. T. Curtis, F. M. Kerton, Catal. Sci. Technol., 2014, 4, 1513-1528. [7] A. C. Kathalikkattil, R. Babu, R. K. Roshan, H. Lee, H. Kim, J. Tharun, E. Suresh, D. W. Park, J. Mater. Chem. A, 2015, 3, 22636-22647. [8] J. Roeser, K. Kailasam, A. Thomas, ChemSusChem, 2012, 5, 1793-1799. [9] P. Puthiaraj, S. Ravi, K. Yu, W. S. Ahn, Appl. Catal. B, 2019, 251, 195-205. [10] M. H. Alkordi, ?. J. Weseliński, V. D'Elia, S. Barman, A. Cadiau, M. N. Hedhili, A. J. Cairns, G. AbdulHalim, J. M. Basset, M. Eddaoudi, J. Mater. Chem. A, 2016, 4, 7453-7460. [11] Y. M. Shen, W. L. Duan, M. Shi, Eur. J. Org. Chem., 2004, 3080-3089. [12] J. Sun, S. Zhang, W. Cheng, J. Ren, Tetrahedron Lett., 2008, 49, 3588-3591. [13] V. Caló, A. Nacci, A. Monopoli, A. Fanizzi, Org. Lett., 2002, 4, 2561-2563. [14] J. M. Sun, S. Fujita, M. Arai, J. Organomet. Chem., 2005, 690, 3490-3497. [15] J. Peng, Y. Deng, New J. Chem., 2001, 25, 639-641. [16] H. Kawanami, A. Sasaki, K. Matsui, Y. Ikushima, Chem. Commun., 2003, 896-897. [17] H. Yang, Y. Gu, Y. Deng, F. Shi, Chem. Commun., 2002, 274-275. [18] F. Zhou, S. L. Xie, X. T. Gao, R. Zhang, C. H. Wang, G. Q. Yin, J. Zhou, Green Chem, 2017, 19, 3908-3915. [19] T. Ema, Y. Miyazaki, J. Shimonishi, C. Maeda, J. Hasegawa, J. Am. Chem. Soc., 2014, 136, 15270-15279. [20] L. Han, H. J. Choi, S. J. Choi, B. Liu, D. W. Park, Green Chem., 2011, 13, 1023-1028. [21] L. Han, S. W. Park, D. W. Park, Energy Environ. Sci., 2009, 2, 1286-1292. [22] X. Zhang, D. Wang, N. Zhao, A. S. N. Al-Arifi, T. Aouak, Z. A. Al-Othman, W. Wei, Y. Sun, Catal. Commun., 2009, 11, 43-46. [23] Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T. Wu, K. Ding, Angew. Chem. Int. Ed., 2007, 46, 7255-7258. [24] Y. Zhang, S. Yin, S. Luo, C. T. Au, Ind. Eng. Chem. Res., 2012, 51, 3951-3957. [25] W. L. Wang, C. Y. Li, L. Yan, Y. Q. Wang, M. Jiang, Y. J. Ding, ACS Catal., 2016, 6, 6091-6100. [26] X. Zhou, Y. Zhang, X. Yang, L. Zhao, G. Wang, J. Mol. Catal. A Chem., 2012, 361, 12-16. [27] J. Tharun, K. M. Bhin, R. Roshan, D. W. Kim, A. C. Kathalikkattil, R. Babu, H. Y. Ahn, Y. S. Won, D. W. Park, Green Chem., 2016, 18, 2479-2487. [28] X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev., 2012, 41, 6010-6022. [29] S. Y. Ding, W. Wang, Chem. Soc. Rev., 2013, 42, 548-568. [30] H. Hu, Q. Q. Yan, R. L. Ge, Y. A. Gao, Chin. J. Catal., 2018, 39, 1167-1179. [31] U. Diaz, A. Corma, Coord. Chem. Rev., 2016, 311, 85-124. [32] J. L. Segura, M. J. Mancheno, F. Zamora, Chem. Soc. Rev., 2016, 45, 5635-5671. [33] H. Xu, X. Chen, J. Gao, J. Lin, M. Addicoat, S. Irle, D. L. Jiang, Chem. Commun., 2014, 50, 1292-1294. [34] Y. Wu, H. Xu, X. Chen, J. Gao, D. L. Jiang, Chem. Commun., 2015, 51, 10096-10098. [35] H. B. Aiyappa, J. Thote, D. B. Shinde, R. Banerjee, S. Kurungot, Chem. Mater., 2016, 28, 4375-4379. [36] W. G. Leng, R. L. Ge, B. Dong, C. Wang, Y. A. Gao, RSC Adv., 2016, 6, 37403-37406. [37] H. P. Ma, B. Liu, B. Li, L. Zhang, Y. G. Li, H. Q. Tan, H. Y. Zang, G. S. Zhu, J. Am. Chem. Soc., 2016, 138, 5897-5903. [38] B. Dong, L. Y. Wang, S. Zhao, R. L. Ge, X. D. Song, Y. Wang, Y. A. Gao, Chem. Commun., 2016, 52, 7082-7085. [39] H. Hu, Q. Q. Yan, M. Wang, L. Yu, W. Pan, B. S. Wang, Y. A. Gao, Chin. J. Catal., 2018, 39, 1437-1444. [40] N. Huang, P. Wang, M. A. Addicoat, T. Heine, D. L. Jiang, Angew. Chem. Int. Ed., 2017, 56, 4982-4986. [41] M. Yuasa, K. Oyaizu, A. Yamaguchi, M. Kuwakado, J. Am. Chem. Soc., 2004, 126, 11128-11129. [42] X. Chen, M. Addicoat, E. Jin, L. Zhai, H. Xu, N. Huang, Z. Guo, L. Liu, S. Irle, D. L. Jiang, J. Am. Chem. Soc., 2015, 137, 3241-3247. [43] S. Zhao, B. Dong, R. L. Ge, C. Wang, X. D. Song, W. Ma, Y. Wang, C. Hao, X. W. Guo, Y. A. Gao, RSC Adv., 2016, 6, 38774-38781. [44] W. G. Leng, Y. S. Peng, J. Q. Zhang, H. Lu, X. Feng, R. L. Ge, B. Dong, B. Wang, X. P. Hu, Y. A. Gao, Chem. Eur. J., 2016, 22, 9087-9091. [45] S. Mitra, S. Kandambeth, B. P. Biswal, A. Khayum M, C. K. Choudhury, M. Mehta, G. Kaur, S. Banerjee, A. Prabhune, S. Verma, S. Roy, U. K. Kharul, R. Banerjee, J. Am. Chem. Soc., 2016, 138, 2823-2828. [46] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae, J. R. Long, Chem. Rev., 2012, 112, 724-781. [47] R. L. Paddock, Y. Hiyama, J. M. McKay, S. T. Nguyen, Tetrahedron Lett., 2004, 45, 2023-2026. [48] R. Srivastava, D. Srinivas, P. Ratnasamy, J. Catal., 2005, 233, 1-15. [49] W. L. Dai, L. Chen, S. F. Yin, S. L. Luo, C. T. Au, Catal. Lett., 2010, 135, 295-304. [50] J. L. Song, Z. F. Zhang, S. Q. Hu, T. B. Wu, T. Jiang, B. X. Han, Green Chem., 2009, 11, 1031-1036. |
[1] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[2] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[3] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[4] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[5] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[6] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[7] | Nan Yin, Weibin Chen, Yong Yang, Zheng Tang, Panjie Li, Xiaoyue Zhang, Lanqin Tang, Tianyu Wang, Yang Wang, Yong Zhou, Zhigang Zou. Tröger’s base derived 3D-porous aromatic frameworks with efficient exciton dissociation and well-defined reactive site for near-unity selectivity of CO2 photo-conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 168-179. |
[8] | Jiaming Li, Yuan Li, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang. Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight [J]. Chinese Journal of Catalysis, 2023, 51(8): 145-156. |
[9] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[10] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[11] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[12] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[14] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[15] | Yuzhuo Chen, Hao Wang, Bing Lu, Ni Yi, Liang Cao, Yong Wang, Shanjun Mao. Fine-structure sensitive deep learning framework for predicting catalytic properties with high precision [J]. Chinese Journal of Catalysis, 2023, 50(7): 284-296. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||