Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (5): 739-755.DOI: 10.1016/S1872-2067(19)63407-8
• Special Column on Electrocatalysis • Previous Articles Next Articles
Xiao Xia Wanga,b, Joshua Sokolowskib, Hui Liuc, Gang Wub
Received:
2019-05-10
Revised:
2019-07-10
Online:
2020-05-18
Published:
2019-12-31
Contact:
S1872-2067(19)63407-8
Supported by:
Xiao Xia Wang, Joshua Sokolowski, Hui Liu, Gang Wu. Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property[J]. Chinese Journal of Catalysis, 2020, 41(5): 739-755.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63407-8
[1] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science, 2017, 355, 146. [2] M. K. Debe, Nature, 2012, 486, 43-51. [3] TOYOTA, Fuel Cell Vehicles, 2014, http://www.toyota.co.jp/jpn/tech/environment/fcv/index.html. [4] D. Papageorgopoulos, Fuel Cells R&D Overview, 2018, https://www.hydrogen.energy.gov/pdfs/review18/fc01_papageorgopoulos_2018_o.pdf. [5] J. Kong, W. Cheng, Chin. J. Catal., 2017, 38, 951-969. [6] Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev., 2015, 44, 2168-2201. [7] M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev., 2016, 116, 3594-3657. [8] W. Wang, B. Lei, S. Guo, Adv. Energy Mater., 2016, 6, 1600236. [9] Y.-J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak, B. Fang, D.P. Wilkinson, Energy Environ. Sci., 2018, 11, 258-275. [10] H.-L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev., 2015, 44, 3056-3078. [11] J. Wu, H. Yang, Acc. Chem. Res., 2013, 46, 1848-1857. [12] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892. [13] V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, Angew. Chem. Int. Ed., 2006, 45, 2897-2901. [14] M. Luo, S. Guo, Nat. Rev. Mater., 2017, 2, 17059. [15] L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan, C. Wang, J. Greeley, Science, 2019, 363, 870-874. [16] M. Gsell, P. Jakob, D. Menzel, Science, 1998, 280, 717-720. [17] B. Hammer, J.K. Nørskov, Surf. Sci., 1995, 343, 211-220. [18] M. Asano, R. Kawamura, R. Sasakawa, N. Todoroki, T. Wadayama, ACS Catal., 2016, 6, 5285-5289. [19] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nat. Mater., 2007, 6, 241-247. [20] J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nørskov, Nat. Chem., 2009, 1, 552-556. [21] M. Escudero-Escribano, P. Malacrida, M. H. Hansen, U. G. Vej-Hansen, A. Velázquez-Palenzuela, V. Tripkovic, J. Schiøtz, J. Rossmeisl, I. E. L. Stephens, I. Chorkendorff, Science, 2016, 352, 73-76. [22] S. C. Ball, S. L. Hudson, J. H. Leung, A. E. Russell, D. Thompsett, B. R. Theobald, ECS Trans., 2007, 11, 1247-1257. [23] J. Hao, Y. Liu, W. Li, J. Li, Mater. Rep. (Cailiao Daobao), 2019, 33, 127-134. [24] C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Nat. Mater., 2013, 12, 765-771. [25] L. Gan, M. Heggen, C. Cui, P. Strasser, ACS Catal., 2016, 6, 692-695. [26] N. Todoroki, R. Kawamura, M. Asano, R. Sasakawa, S. Takahashi, T. Wadayama, Phys. Chem. Chem. Phys., 2018, 20, 11994-12004. [27] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science, 2007, 315, 493-497. [28] S. Kobayashi, M. Wakisaka, D. A. Tryk, A. Iiyama, H. Uchida, J. Phys. Chem. C, 2017, 121, 11234-11240. [29] S.-I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H.-C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett., 2013, 13, 3420-3425. [30] J. Wu, L. Qi, H. You, A. Gross, J. Li, H. Yang, J. Am. Chem. Soc., 2012, 134, 11880-11883. [31] J. Park, L. Zhang, S.-I. Choi, L. T. Roling, N. Lu, J. A. Herron, S. Xie, J. Wang, M. J. Kim, M. Mavrikakis, Y. Xia, ACS Nano, 2015, 9, 2635-2647. [32] S.-I. Choi, R. Choi, S. W. Han, J. T. Park, Chem.-Eur. J., 2011, 17, 12280-12284. [33] R. M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R. E. Dunin-Borkowski, M. Gliech, J. Solla-Gullón, E. Herrero, J. M. Feliu, P. Strasser, Nano Lett., 2015, 15, 7473-7480. [34] X. Sun, K. Jiang, N. Zhang, S. Guo, X. Huang, ACS Nano, 2015, 9, 7634-7640. [35] X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, Science, 2015, 348, 1230-1234. [36] H. Zhu, M.-C., Luo, Y.-Z. Cai, Z.-N. Sun, Acta Phys.-Chim. Sin., 2016, 32, 2462-2474. [37] B. Corona, M. Howard, L. Zhang, G. Henkelman, J. Chem. Phys., 2016, 145, 244708. [38] C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic, V. R. Stamenkovic, Nano Lett., 2011, 11, 919-926. [39] X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z. L. Wang, S. Sun, J. Am. Chem. Soc., 2014, 136, 5745-5749. [40] S. Zhang, Y. Hao, D. Su, V. V. T. Doan-Nguyen, Y. Wu, J. Li, S. Sun, C. B. Murray, J. Am. Chem. Soc., 2014, 136, 15921-15924. [41] X. Zhao, S. Chen, Z. Fang, J. Ding, W. Sang, Y. Wang, J. Zhao, Z. Peng, J. Zeng, J. Am. Chem. Soc., 2015, 137, 2804-2807. [42] L.-L. Shen, G.-R. Zhang, S. Miao, J. Liu, B.-Q. Xu, ACS Catal., 2016, 6, 1680-1690. [43] S. Cheong, J. D. Watt, R. D. Tilley, Nanoscale, 2010, 2, 2045-2053. [44] D. S. He, D. He, J. Wang, Y. Lin, P. Yin, X. Hong, Y. Wu, Y. Li, J. Am. Chem. Soc., 2016, 138, 1494-1497. [45] L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.-I. Choi, J. Park, J.A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science, 2015, 349, 412-416. [46] X. Wang, L. Figueroa-Cosme, X. Yang, M. Luo, J. Liu, Z. Xie, Y. Xia, Nano Lett., 2016, 16, 1467-1471. [47] X. Peng, S. Zhao, T. J. Omasta, J. M. Roller, W. E. Mustain, Appl. Catal. B, 2017, 203, 927-935. [48] C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K.L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science, 2014, 343, 1339-1343. [49] S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic, S. Sun, Angew. Chem. Int. Ed., 2013, 52, 3465-3468. [50] L. Su, S. Shrestha, Z. Zhang, W. Mustain, Y. Lei, J. Mater. Chem. A, 2013, 1, 12293-12301. [51] H. Zhu, S. Zhang, S. Guo, D. Su, S. Sun, J. Am. Chem. Soc., 2013, 135, 7130-7133. [52] N. N. Kariuki, W. J. Khudhayer, T. Karabacak, D. J. Myers, ACS Catal., 2013, 3, 3123-3132. [53] L. Bu, J. Ding, S. Guo, X. Zhang, D. Su, X. Zhu, J. Yao, J. Guo, G. Lu, X. Huang, Adv. Mater., 2015, 27, 7204-7212. [54] M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li, Y. Li, C. Li, Y. Yang, L. Wang, P. Gao, G. Lu, S. Guo, Adv. Mater., 2018, 30, 1705515. [55] M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. Duan, Science, 2016, 354, 1414-1419. [56] E. Antolini, Appl. Catal. B, 2017, 217, 201-213. [57] E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, A. C. Angelo, F. J. Disalvo, H. D. Abruña, J. Am. Chem. Soc., 2004, 126, 4043-4049. [58] C. Frommen, H. Rösner, Mater. Lett., 2004, 58, 123-127. [59] S. Koh, M. F. Toney, P. Strasser, Electrochim. Acta, 2007, 52, 2765-2774. [60] J. Liang, Z. Miao, F. Ma, R. Pan, X. Chen, T. Wang, H. Xie, Q. Li, Chin. J. Catal., 2018, 39, 583-589. [61] M. Luo, Y. Sun, L. Wang, S. Guo, Adv. Energy Mater., 2017, 7, 1602073. [62] W. Xiao, W. Lei, M. Gong, H. L. Xin, D. Wang, ACS Catal., 2018, 8, 3237-3256. [63] W. S. Jung, B. N. Popov, ACS Appl. Mater. Interfaces, 2017, 9, 23679-23686. [64] D. S. Choi, A. W. Robertson, J. H. Warner, S. O. Kim, H. Kim, Adv. Mater., 2016, 28, 7115-7122. [65] Y. Cai, P. Gao, F. Wang, H. Zhu, Electrochim. Acta, 2017, 245, 924-933. [66] L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo, X. Huang, Nat. Commun., 2016, 7, 11850. [67] X. X. Du, Y. He, X. X. Wang, J. N. Wang, Energy Environ. Sci., 2016, 9, 2623-2632. [68] D. Wang, Y. Yu, H. L. Xin, R. Hovden, P. Ercius, J. A. Mundy, H. Chen, J. H. Richard, D. A. Muller, F. J. Disalvo, Nano Lett., 2012, 12, 5230-5238. [69] D. Wang, Y. Yu, J. Zhu, S. Liu, D. A. Muller, H. D. Abruña, Nano Lett., 2015, 15, 1343-1348. [70] B. Arumugam, B. Kakade, T. Tamaki, M. Arao, H. Imai, T. Yamaguchi, RSC Adv., 2014, 4, 27510-27517. [71] T. Tamaki, A. Minagawa, B. Arumugam, B. A. Kakade, T. Yamaguchi, J. Power Sources, 2014, 271, 346-353. [72] B. C. Beard, P. N. Ross, J. Electrochem. Soc., 1990, 137, 3368-3374. [73] M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart, J. Electrochem. Soc., 1994, 141, 2659-2668. [74] X. Li, L. An, X. Wang, F. Li, R. Zou, D. Xia, J. Mater. Chem., 2012, 22, 6047-6052. [75] H. Schulenburg, E. Müller, G. Khelashvili, T. Roser, H. Bönnemann, A. Wokaun, G. G. Scherer, J. Phys. Chem. C, 2009, 113, 4069-4077. [76] Y. Wang, D. Sun, T. Chowdhury, J. S. Wagner, T. J. Kempa, A. S. Hall, J. Am. Chem. Soc., 2019, 141, 2342-2347. [77] J. Kim, Y. Lee, S. Sun, J. Am. Chem. Soc., 2010, 132, 4996-4997. [78] J. Kim, C. Rong, Y. Lee, J. P. Liu, S. Sun, Chem. Mater., 2008, 20, 7242-7245. [79] Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett., 2015, 15, 2468-2473. [80] H. Chen, D. Wang, Y. Yu, K. A. Newton, D. A. Muller, H. Abruña, F. J. DiSalvo, J. Am. Chem. Soc., 2012, 134, 18453-18459. [81] H. Chen, Y. Yu, H. L. Xin, K. A. Newton, M. E. Holtz, D. Wang, D. A. Muller, H. D. Abruña, F. J. DiSalvo, Chem. Mater., 2013, 25, 1436-1442. [82] Z. Cui, H. Chen, W. Zhou, M. Zhao, F. J. DiSalvo, Chem. Mater., 2015, 27, 7538-7545. [83] D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B. S. Mun, K.-S. Lee, N.-S. Lee, S. J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung, T. Hyeon, J. Am. Chem. Soc., 2015, 137, 15478-15485. [84] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A. Valerio, F. Uribe, Top. Catal., 2007, 46, 249-262. [85] T. Ghosh, M. B. Vukmirovic, F. J. DiSalvo, R. R. Adzic, J. Am. Chem. Soc., 2010, 132, 906-907. [86] G. Wang, B. Huang, L. Xiao, Z. Ren, H. Chen, D. Wang, H. D. Abruña, J. Lu, L. Zhuang, J. Am. Chem. Soc., 2014, 136, 9643-9649. [87] Q. Jia, K. Caldwell, D. E. Ramaker, J. M. Ziegelbauer, Z. Liu, Z. Yu, M. Trahan, S. Mukerjee, J. Phys. Chem. C, 2014, 118, 20496-20503. [88] J. Li, Z. Xi, Y.-T. Pan, J.S. Spendelow, P. N. Duchesne, D. Su, Q. Li, C. Yu, Z. Yin, B. Shen, Y. S. Kim, P. Zhang, S. Sun, J. Am. Chem. Soc., 2018, 140, 2926-2932. [89] J. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y. S. Kim, A. A. Peterson, K. L. More, H. Zhu, S. Sun, Joule, 2018, 3, 124-135. [90] W. Yang, L. Zou, Q. Huang, Z. Zou, Y. Hu, H. Yang, J. Electrochem. Soc., 2017, 164, H331-H337. [91] D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Nat. Mater., 2013, 12, 81-87. [92] S. Prabhudev, M. Bugnet, C. Bock, G.A. Botton, ACS Nano, 2013, 7, 6103-6110. [93] L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.-Y. Ma, D. Su, X. Huang, Science, 2016, 354, 1410-1414. [94] L. Bu, Q. Shao, B. E, J. Guo, J. Yao, X. Huang, J. Am. Chem. Soc., 2017, 139, 9576-9582. [95] Z. Yu, J. Zhang, Z. Liu, J. M. Ziegelbauer, H. Xin, I. Dutta, D. A. Muller, F. T. Wagner, J. Phys. Chem. C, 2012, 116, 19877-19885. [96] X.-Y. Lang, G.-F. Han, B.-B. Xiao, L. Gu, Z.-Z. Yang, Z. Wen, Y.-F. Zhu, M. Zhao, J.-C. Li, Q. Jiang, Adv. Funct. Mater., 2015, 25, 230-237. [97] J. S. Spendelow, U.S. DOE 2018 Hydrogen and Fuel Cell Program AMR Proceedings, https://www.hydrogen.energy.gov/pdfs/re-view18/fc161_spendelow_2018_o.pdf, (2018). [98] B. Han, C. E. Carlton, A. Kongkanand, R. S. Kukreja, B. R. Theobald, L. Gan, R. O'Malley, P. Strasser, F. T. Wagner, Y. Shao-Horn, Energy Environ. Sci., 2015, 8, 258-266. [99] L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.-J. Liu, Science, 2018, 362, 1276-1281. [100] M. Gummalla, S. C. Ball, D. A. Condit, S. Rasouli, K. Yu, P. J. Ferreira, D. J. Myers, Z. Yang, Catalysts, 2015, 5, 926-948. [101] Q. Jia, K. Caldwell, K. Strickland, J. M. Ziegelbauer, Z. Liu, Z. Yu, D. E. Ramaker, S. Mukerjee, ACS Catal., 2015, 5, 176-186. [102] H. Y. Kim, S. Cho, Y. J. Sa, S. M. Hwang, G. G. Park, T. J. Shin, H. Y. Jeong, S. D. Yim, S. H. Joo, Small, 2016, 12, 5347-5353. [103] X. X. Wang, S. Hwang, Y.-T. Pan, K. Chen, Y. He, S. Karakalos, H. Zhang, J. S. Spendelow, D. Su, G. Wu, Nano Lett., 2018, 18, 4163-4171. [104] S. Guo, S. Sun, J. Am. Chem. Soc., 2012, 134, 2492-2495. [105] M. Chen, S. Hwang, J. Li, S. Karakalos, K. Chen, Y. He, S. Mukherjee, D. Su, G. Wu, Nanoscale, 2018, 10, 17318-17326. [106] S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-J. Liu, J. Mater. Chem. A, 2017, 5, 1808-1825. [107] N. Du, C. Wang, R. Long, Y. Xiong, Nano Res., 2017, 10, 3228-3237. [108] B. Y. Guan, X. Y. Yu, H. B. Wu, X. W. Lou, Adv. Mater., 2017, 29, 1703614. [109] V. Yarlagadda, M. K. Carpenter, T. E. Moylan, R. S. Kukreja, R. Koestner, W. Gu, L. Thompson, A. Kongkanand, ACS Energy Lett., 2018, 3, 618-621. |
[1] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[2] | Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 50(7): 126-174. |
[3] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[4] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[5] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[6] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[7] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[8] | Tianmi Tang, Yin Wang, Jingyi Han, Qiaoqiao Zhang, Xue Bai, Xiaodi Niu, Zhenlu Wang, Jingqi Guan. Dual-atom Co-Fe catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 46(3): 48-55. |
[9] | Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery [J]. Chinese Journal of Catalysis, 2023, 46(3): 36-47. |
[10] | Xingzong Dong, Guangye Liu, Zhaoan Chen, Quan Zhang, Yunpeng Xu, Zhongmin Liu. Enhanced performance of Pd-[DBU][Cl]/AC mercury-free catalysts in acetylene hydrochlorination [J]. Chinese Journal of Catalysis, 2023, 46(3): 137-147. |
[11] | Xuan Liu, Jiashun Liang, Qing Li. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells [J]. Chinese Journal of Catalysis, 2023, 45(2): 17-26. |
[12] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[13] | Liqing Wu, Qing Liang, Jiayi Zhao, Juan Zhu, Hongnan Jia, Wei Zhang, Ping Cai, Wei Luo. A Bi-doped RuO2 catalyst for efficient and durable acidic water oxidation [J]. Chinese Journal of Catalysis, 2023, 55(12): 182-190. |
[14] | Hangjie Li, Yuehua Xiao, Jiale Xiao, Kai Fan, Bingkuan Li, Xiaolong Li, Liang Wang, Feng-Shou Xiao. Selective hydrogenation of CO2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts [J]. Chinese Journal of Catalysis, 2023, 54(11): 178-187. |
[15] | Suwei Xia, Qixing Zhou, Ruoxu Sun, Lizhang Chen, Mingyi Zhang, Huan Pang, Lin Xu, Jun Yang, Yawen Tang. In-situ immobilization of CoNi nanoparticles into N-doped carbon nanotubes/nanowire-coupled superstructures as an efficient Mott-Schottky electrocatalyst toward electrocatalytic oxygen reduction [J]. Chinese Journal of Catalysis, 2023, 54(11): 278-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||