Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (5): 756-769.DOI: 10.1016/S1872-2067(19)63404-2
• Special Column on Electrocatalysis • Previous Articles Next Articles
Maha Rhandi, Marine Trégaro, Florence Druart, Jonathan Deseure, Marian Chatenet
Received:
2019-05-20
Revised:
2019-07-15
Online:
2020-05-18
Published:
2019-12-31
Contact:
S1872-2067(19)63404-2
Maha Rhandi, Marine Trégaro, Florence Druart, Jonathan Deseure, Marian Chatenet. Electrochemical hydrogen compression and purification versus competing technologies: Part I. Pros and cons[J]. Chinese Journal of Catalysis, 2020, 41(5): 756-769.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63404-2
[1] A. F. Ghoniem, Prog. Energy Combus. Sci., 2011, 37, 15-51. [2] N. A. Kelly, T. L. Gibson, D. B. Ouwerkerk, Int. J. Hydrogen Energy, 2008, 33, 2747-2764. [3] www.energy.gov, Last access:Feb 2, 2019. [4] M. Yáñez, A. Ortiz, B. Brunaud, I. E. Grossmann, I. Ortiz, Appl. Energy, 2018, 231, 777-787. [5] T. da Silva Veras, T. S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva César, Int. J. Hydrogen Energy, 2017, 42, 2018-2033. [6] I. Dincer, C. Acar, Int. J. Hydrogen Energy, 2015, 40, 11094-11111. [7] J.-P. Magnin, J. Deseure, Appl. Energy, 2019, 239, 635-643. [8] ISO 14687-2:2012, 2012. [9] ISO 14687-3:2014, 2014. [10] G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, Renew. Sustainable Energy Rev., 2019, 102, 150-170. [11] J. Bonjour, J.-B. Chalfen, F. Meunier, Ind. Eng. Chem. Res., 2002, 41, 5802-5811. [12] F. D. Rossini, Pure Appl. Chem., 1970, 22, 555-570. [13] G. Q. (UOP Miller Tarrytown, NY (US)) and J. (Union C. B. Stoecker N. V. Antwerp (BE)), Research Org.:None, 1989. [14] R. Agrawal, S. R. Auvil, S. P. DiMartino, J. S. Choe, J. A. Hopkins, Gas Sep. Purif., 1988, 2, 9-15. [15] S. Sircar, T. C. Golden, Sep. Sci. Technol., 2000, 35, 667-687. [16] M. Mondal, A. Datta, Int. J. Energy Res., 2017, 41, 448-458. [17] A. Abdeljaoued, F. Relvas, A. Mendes, M. H. Chahbani, J. Environ. Chem. Eng., 2018, 6, 338-355. [18] V. I. Agueda, J. A. Delgado, M. A. Uguina, P. Brea, A. I. Spjelkavik, R. Blom, C. Grande, Chem. Eng. Sci., 2015, 124, 159-169. [19] J. Xiao, L. Fang, P. Bénard, R. Chahine, Int. J. Hydrogen Energy, 2018, 43, 13962-13974. [20] A. Yokozeki, M. B. Shiflett, Appl. Energy, 2007, 84, 351-361. [21] N. A. Al-Mufachi, N. V. Rees, R. Steinberger-Wilkens, Renew. Sustainable Energy Rev., 2015, 47, 540-551. [22] M. Hong, S. Li, J. L. Falconer, R. D. Noble, J. Membrane Sci., 2008, 307, 277-283. [23] R. D. Noble, S. A. Stern, Ed., Membrane separations technology:principles and applications, 2nd. impression. Elsevier:Amsterdam, 1995. [24] D. Bastani, N. Esmaeili, M. Asadollahi, J. Ind. Eng. Chem., 2013, 19, 375-393. [25] P. C. K. Vesborg, T. F. Jaramillo, RSC Adv., 2012, 2, 7933. [26] M. D. Dolan, D. M. Viano, M. J. Langley, K. E. Lamb, J. Membrane Sci., 2018, 549, 306-311. [27] Z. Zhu, J. Hou, W. He, W. Liu, J. Alloys Compd., 2016, 660, 231-234. [28] E. Rebollo, C. Mortalo, S. Escolastico, S. Boldrini, S. Barison, J. M. Serra, M. Fabrizio, Energy Environ. Sci., 2015, 8, 3675-3686. [29] J. M. Sedlak, J. F. Austin, A. B. Laconti, Int. J. Hydrogen Energy, 1981, 6, 45-51. [30] R. L. Michael, Grant, Robert, Bruce, R. Lambert Michael and Grant, Robert, Bruce, 04-Oct-2007. [31] A. Golmakani, S. Fatemi, J. Tamnanloo, Sep. Purif. Technol., 2017, 176, 73-91. [32] G. Petitpas, S. M. Aceves, Int. J. Hydrogen Energy, 2014, 39, 20319-20323. [33] W. Vielstich, Ed., Fuel cell technology and applications:pt. 1, Reprinted. Wiley:Chichester, 2007. [34] W. Vielstich, H. Yokokawa, H. Gasteiger, Eds., Advances in Electrocatalysis, Materials, Diagnostics and Durability; part 2. Wiley:Chichester, 2009. [35] A. Midilli, M. Ay, I. Dincer, M. A. Rosen, Renew. Sustainable Energy Rev., 2005, 9, 255-271. [36] R. Khaksarfard, M. R. Kameshki, M. Paraschivoiu, Shock Waves, 2010, 20, 205-216. [37] E. L. Broerman, J. Bennett, N. Poerner, D. Strickland, J. Helffrich, S. Coogan, A. Rimpel, P. Bueno, DOE Hydrogen and Fuel Cells Program. FY 2015 Annual Progress Report, 2016. [38] H. Jiang, K. Liang, Z. Li, Mechan. Sys. Signal Processing, 2019, 121, 828-840. [39] R. L. Unger, Proceedings of International Compressor Engineering, 1998. [40] K. Liang, R. Stone, M. Dadd, P. Bailey, Int. J. Refrig., 2016, 66, 32-40. [41] K. Liang, R. Stone, M. Dadd, P. Bailey, Int. J. Refrig., 2014, 40, 450-459. [42] K. Liang, Int. J. Refrig., 2017, 84, 253-273. [43] N. A. Kermani, I. Petrushina, A. Nikiforov, J. O. Jensen, M. Rokni, Int. J. Hydrogen Energy, 2016, 41, 16688-16695. [44] Z. Lei, C. Dai, B. Chen, Chem. Rev., 2014, 114, 1289-1326. [45] S. Werner, M. Haumann, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 203-230. [46] T. Predel, E. Schlücker, P. Wasserscheid, D. Gerhard, W. Arlt, Chem. Eng. Technol., 2007, 30, 1475-1480. [47] J. D. Van de Ven, P. Y. Li, Appl. Energy, 2009, 86, 2183-2191. [48] M. Mayer, A3PS Conference, 2014. [49] M. V. Lototskyy, V. A. Yartys, B. G. Pollet, R. C. Bowman, Int. J. Hydrogen Energy, 2014, 39, 5818-5851. [50] V. A. Yartys, G. Vijayaprasath, R. Murugan, S. Asaithambi, G. Anandha Babu, P. Sakthivel, T. Mahalingam, Y. Hayakawa, G. Ravi, Appl. Phys. A, 2016, 122, 122. [51] F. Laurencelle, Z. Dehouche, F. Morin, J. Goyette, J. Alloys Compd, 2009, 475, 810-816. [52] M. Bampaou, K. D. Panopoulos, A. I. Papadopoulos, P. Seferlis, S. Voutetakis, Chem. Eng. Trans., 2018, 70, 1213-1218. [53] R. Ströbel, M. Oszcipok, M. Fasil, B. Rohland, L. Jörissen, J. Garche, J. Power Sources, 2002, 105, 208-215. [54] P. J. Bouwman, J. Konink, D. Semerel, L. Raymakers, M. Koeman, W. Dalhuijsen, E. Milacic, M. Mulder, ECS Trans., 2014, 64, 1009-1018. [55] C. Casati, P. Longhi, L. Zanderighi, F. Bianchi, J. Power Sources, 2008, 180, 103-113. [56] H. Monjid, DOE Hydrogen & Fuel Cells Program, 14-Jun-2018. [57] J. Catalano, A. Bentien, D. N. Østedgaard-Munck, S. Kjelstrup, J. Membrane Sci., 2015, 478, 37-48. [58] T. Sakai, H. Takenaka, N. Wakabayashi, Y. Kawami, E. Torikai, J. Electrochem. Soc., 1985, 132, 1328-1332. [59] R. P. W. J. Struis, S. Stucki, M. Wiedorn, J. Membrane Sci., 1996, 113, 93-100. [60] P. Bouwman, Fuel Cells Bull., 2014, 2014, 12-16. [61] L. Lipp, DOE——FCE003727, 1235441, 2016. [62] B. Rohland, K. Eberle, R. Ströbel, J. Scholta, J. Garche, Electrochim. Acta, 1998, 43, 3841-3846. [63] B. M. Besancon, V. Hasanov, R. Imbault-Lastapis, R. Benesch, M. Barrio, M. J. Mølnvik, Int. J. Hydrogen Energy, 2009, 34, 2350-2360. [64] K. Onda, K. Ichihara, M. Nagahama, Y. Minamoto, T. Araki, J. Power Sources, 2007, 164, 1-8. [65] M. Chatenet, L. Dubau, N. Job, F. Maillard, Catal. Today, 2010, 156, 76-86. [66] T. A. Zawodzinski, M. Neeman, L. O. Sillerud, S. Gottesfeld, J. Phys. Chem., 1991, 95, 6040-6044. [67] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc., 1991, 138, 2334. [68] J. T. Hinatsu, M. Mizuhata, H. Takenaka, J. Electrochem. Soc., 1994, 141, 1493. [69] S. Ge, X. Li, B. Yi, I.-M. Hsing, J. Electrochem. Soc, 2005, 152, A1149. [70] A. Kusoglu, B. L. Kienitz, A. Z. Weber, J. Electrochem. Soc, 2011, 158, B1504. [71] P. W. Majsztrik, M. B. Satterfield, A. B. Bocarsly, J. B. Benziger, J. Membrane Sci., 2007, 301, 93-106. [72] D. M. Bernardi, M. W. Verbrugge, AIChE J., 1991, 37, 1151-1163. [73] D. Bessarabov, H. Wang, H. Li, N. Zhao, Eds., PEM Electrolysis for Hydrogen Production:Principles and Applications. CRC Press, 2015. [74] S. S. Kocha, J. D. Yang, J. S. Yi, AIChE J., 2006, 52, 1916-1925. [75] X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, J. Zhang, J. Power Sources, 2007, 167, 25-31. [76] N. T. Truc, S. Ito, K. Fushinobu, Int. J. Heat Mass Transfer, 2018, 127, 447-456. [77] A. Brunetti, E. Fontananova, A. Donnadio, M. Casciola, M. L. Di Vona, E. Sgreccia, E. Drioli, G. Barbieri, J. Power Sources, 2012, 205, 222-230. [78] K. D. Baik, B. K. Hong, M. S. Kim, Renew. Energy, 2013, 57, 234-239. [79] H. K. Lee, H. Y. Choi, K. H. Choi, J. H. Park, T. H. Lee, J. Power Sources, 2004, 132, 92-98. [80] S. A. Grigoriev, I. G. Shtatniy, P. Millet, V. I. Porembsky, V. N. Fateev, Int. J. Hydrogen Energy, 2011, 36, 4148-4155. [81] M. Mukaddam, E. Litwiller, I. Pinnau, Macromolecules, 2016, 49, 280-286. [82] V. A. Sethuraman, S. Khan, J. S. Jur, A. T. Haug, J. W. Weidner, Electrochim. Acta, 2009, 54, 6850-6860. [83] S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources, 2012, 208, 257-262. [84] Y. He, E. L. Cussler, J. Membrane Sci., 1992, 68, 43-52. [85] F. Barbir, H. Görgün, J. Appl. Electrochem., 2007, 37, 359-365. |
[1] | Yangshen Chen, Miao Kan, Shuai Yan, Junbo Zhang, Kunhao Liu, Yaqin Yan, Anxiang Guan, Ximeng Lv, Linping Qian, Gengfeng Zheng. Electroreduction of air-level CO2 with high conversion efficiency [J]. Chinese Journal of Catalysis, 2022, 43(7): 1703-1709. |
[2] | Dinghua Zhou, Ke Fan. Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2021, 42(6): 904-919. |
[3] | Wenli Yu, Yuxiao Gao, Zhi Chen, Ying Zhao, Zexing Wu, Lei Wang. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides [J]. Chinese Journal of Catalysis, 2021, 42(11): 1876-1902. |
[4] | Yue Hu, Jian Wu, Yujia Han, Weibin Xu, Li Zhang, Xue Xia, Chuande Huang, Yanyan Zhu, Ming Tian, Yang Su, Lin Li, Baolin Hou, Jian Lin, Wen Liu, Xiaodong Wang. Intensified solar thermochemical CO2 splitting over iron-based redox materials via perovskite-mediated dealloying-exsolution cycles [J]. Chinese Journal of Catalysis, 2021, 42(11): 2049-2058. |
[5] | Marine Trégaro, Maha Rhandi, Florence Druart, Jonathan Deseure, Marian Chatenet. Electrochemical hydrogen compression and purification versus competing technologies: Part II. Challenges in electrocatalysis [J]. Chinese Journal of Catalysis, 2020, 41(5): 770-782. |
[6] | Xue Chen, Xuemin Li, Pengkun Wei, Xiaoyong Ma, Qinlin Yu, Lu Liu. Selective synthesis of Sb2S3 nanostructures with different morphologies for high performance in dye-sensitized solar cells [J]. Chinese Journal of Catalysis, 2020, 41(3): 435-441. |
[7] | Zhidong Wei, Junying Liu, Wenfeng Shangguan. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production [J]. Chinese Journal of Catalysis, 2020, 41(10): 1440-1450. |
[8] | Zhidong Wei, Meiqi Xu, Junying Liu, Weiqi Guo, Zhi Jiang, Wenfeng Shangguan. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS: Solid-solution-assisted photocatalysis [J]. Chinese Journal of Catalysis, 2020, 41(1): 103-113. |
[9] | Yanan Liu, Liubo Ma, Congcong Shen, Xin Wang, Xiao Zhou, Zhiwei Zhao, Anwu Xu. Highly enhanced visible-light photocatalytic hydrogen evolution on g-C3N4 decorated with vopc through π-π interaction [J]. Chinese Journal of Catalysis, 2019, 40(2): 168-176. |
[10] | Yishu Fu, Yanan Li, Xia Zhang, Yuyu liu, Xiaodong Zhou, Jinli Qiao. Electrochemical CO2 reduction to formic acid on crystalline SnO2 nanosphere catalyst with high selectivity and stability [J]. Chinese Journal of Catalysis, 2016, 37(7): 1081-1088. |
[11] | Li Liu, Na Tian, Long Huang, Yu-Hao Hong, Ai-Yun Xie, Feng-Yang Zhang, Chi Xiao, Zhi-You Zhou, Shi-Gang Sun. Influence of transition metal modification of oxide-derived Cu electrodes in electroreduction of CO2 [J]. Chinese Journal of Catalysis, 2016, 37(7): 1070-1075. |
[12] | Yu Long, Bing Yuan, Jiantai Ma. Epoxidation of alkenes efficiently catalyzed by Mo salen supported on surface-modified halloysite nanotubes [J]. Chinese Journal of Catalysis, 2015, 36(3): 348-354. |
[13] | Qi Wang, Xing Lu, Qin Xin, Gongquan Sun. Polyol-synthesized Pt2.6Sn1Ru0.4/C as a high-performance anode catalyst for direct ethanol fuel cells [J]. Chinese Journal of Catalysis, 2014, 35(8): 1394-1401. |
[14] | JO Wan-Kuen, KANG Hyun-Jung. LED Irradiation of a Photocatalyst for Benzene, Toluene, Ethyl Benzene, and Xylene Decomposition [J]. Chinese Journal of Catalysis, 2012, 33(10): 1672-1680. |
[15] | LIU Zhi-Cheng, WANG Yang-Dong, XIE Zai-Ku. Thoughts on the Future Development of Zeolitic Catalysts from an Industrial Point of View [J]. Chinese Journal of Catalysis, 2012, 33(1): 22-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||