Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (6): 915-927.DOI: 10.1016/S1872-2067(19)63528-X
• Reviews • Previous Articles Next Articles
Matthias Scharfe, Guido Zichittella, Vladimir Paunovic, Javier Pérez-Ramírez
Received:
2019-09-14
Revised:
2019-10-18
Online:
2020-06-18
Published:
2020-01-21
Contact:
S1872-2067(19)63528-X
Supported by:
Matthias Scharfe, Guido Zichittella, Vladimir Paunovic, Javier Pérez-Ramírez. Ceria in halogen chemistry[J]. Chinese Journal of Catalysis, 2020, 41(6): 915-927.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63528-X
[1] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev., 2016, 116, 5987-6041. [2] R. J. Gorte, AIChE J., 2010, 56, 1126-1135. [3] M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ., 2016, 140, 117-134. [4] Q. Wang, K. L. Yeung, M. A. Bañares, Catal. Today, 2019, doi:10.1016/j.cattod.2019.05.016. [5] J. Pérez-Ramírez, C. Mondelli, T. Schmidt, O. F.-K. Schlüter, A. Wolf, L. Mleczko, T. Dreier, Energy Environ. Sci., 2011, 4, 4786-4799. [6] R. Lin, A. P. Amrute, J. Pérez-Ramírez, Chem. Rev., 2017, 117, 4182-4247. [7] E.-L. Dreher, K. K. Beutel, J. D. Myers, T. Lübbe, S. Krieger, L. H. Pottenger, Chloroethanes and Chloroethylenes, in:Ullmann's Encyclopedia Industrial Chemistry, Wiley-VCH, Weinheim, 2014, 9-16. [8] K. Weissermel, H.-J. Arpe, Vinyl-Halogen and Vinyl-Oxygen Compounds, in:Industrial Organic Chemistry, 4th ed., Wiley-VCH, Weinheim, 2008, 217-238. [9] M. Scharfe, P. A. Lira-Parada, V. Paunovic, M. Moser, A. P. Amrute, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2016, 55, 3068-3072. [10] H. Y. Pan, R. G. Minet, S. W. Benson, T. T. Tsotsis, Ind. Eng. Chem. Res., 1994, 33, 2996-3003. [11] A. P. Amrute, C. Mondelli, J. Pérez-Ramírez, Catal. Sci. Technol., 2012, 2, 2057-2065. [12] D. Teschner, G. Novell-Leruth, R. Farra, A. Knop-Gericke, R. Schlögl, L. Szentmiklósi, M. González Hevia, H. Soerijanto, R. Schomäcker, J. Pérez-Ramírez, N. López, Nat. Chem., 2012, 4, 739-745. [13] N. López, J. Gómez-Segura, R. P. Marín, J. Pérez-Ramírez, J. Catal., 2008, 255, 29-39. [14] A. P. Amrute, C. Mondelli, M. Moser, G. Novell-Leruth, N. López, D. Rosenthal, R. Farra, M. E. Schuster, D. Teschner, T. Schmidt, J. Pérez-Ramírez, J. Catal., 2012, 286, 287-297. [15] R. Farra, M. Eichelbaum, R. Schlögl, L. Szentmiklósi, T. Schmidt, A.P. Amrute, C. Mondelli, J. Pérez-Ramírez, D. Teschner, J. Catal., 2013, 297, 119-127. [16] R. Farra, M. García-Melchor, M. Eichelbaum, M. Hashagen, W. Frandsen, J. Allan, F. Girgsdies, L. Szentmiklósi, N. López, D. Teschner, ACS Catal., 2013, 3, 2256-2268. [17] M. Möller, S. Urban, P. Cop, T. Weller, R. Ellinghaus, M. Kleine-Boymann, C. Fiedler, J. Sann, J. Janek, L. Chen, P. J. Klar, D. M. Hofmann, J. Philipps, P. Dolcet, S. Gross, H. Over, B. M. Smarsly, ChemCatChem, 2015, 7, 3738-3747. [18] S. Urban, N. Tarabanko, C. H. Kanzler, K. Zalewska-Wierzbicka, R. Ellinghaus, S. F. Rohrlack, L. Chen, P. J. Klar, B. M. Smarsly, H. Over, Catal. Lett., 2013, 143, 1362-1367. [19] M. Moser, C. Mondelli, T. Schmidt, F. Girgsdies, M. E. Schuster, R. Farra, L. Szentmiklósi, D. Teschner, J. Pérez-Ramírez, Appl. Catal. B Environ., 2013, 132-133, 123-131. [20] M. Moser, L. Rodríguez-García, J. Pérez-Ramírez, Ind. Eng. Chem. Res., 2014, 53, 9067-9075. [21] T. Schmidt, M. Moser, W. Müller, WO Patent, 2013/060628 A1, 2013. [22] M. Scharfe, M. Capdevila-Cortada, V. A. Kondratenko, E. V. Kondratenko, S. Colussi, A. Trovarelli, N. López, J. Pérez-Ramírez, ACS Catal., 2018, 8, 2651-2663. [23] J. J. Dugan, US Patent, 3670037, 1972. [24] M. F. Lemanski, F. C. Leitert, C. G. Vinson, US Patent, 4115323, 1978. [25] M. E. Jones, M. M. Olken, D. Hickman, US Patent, 6909024 B1, 2005. [26] M. Scharfe, P. A. Lira-Parada, A. P. Amrute, S. Mitchell, J. Pérez-Ramírez, J. Catal., 2016, 344, 524-534. [27] E. McFarland, Science, 2012, 338, 340-342. [28] S. G. Podkolzin, E. E. Stangland, M. E. Jones, E. Peringer, J. A. Lercher, J. Am. Chem. Soc., 2007, 129, 2569-2576. [29] J. Tollefson, Nature, 2016, doi:10.1038/nature.2016.19141. [30] V. Paunovic, G. Zichittella, M. Moser, A. P. Amrute, J. Pérez-Ramírez, Nat. Chem., 2016, 8, 803-809. [31] M. Moser, L. Rodríguez-García, A. P. Amrute, J. Pérez-Ramírez, ChemCatChem, 2013, 5, 3520-3523. [32] G. W. Hooker, US Patent, 2163877, 1939. [33] M. Moser, G. Vilé, S. Colussi, F. Krumeich, D. Teschner, L. Szentmiklósi, A. Trovarelli, J. Pérez-Ramírez, J. Catal., 2015, 331, 128-137. [34] T. J. Hall, B. G. McKinnie, US Patent, 2010/0015034 A1, 2010. [35] M. Mugdan, US Patent, 2536457, 1951. [36] G. R. Lester, US Patent, 3310380, 1967. [37] C. J. Louvar, A. J. De Rosset, US Patent, 3346340, 1967. [38] G. R. Lester, US Patent, 3353916, 1967. [39] P. F. Schubert, D. W. Schubert, A. R. Smith, S. Mahajan, T. Rostrup-nielsen, US Patent, 5366949, 1994. [40] V. Paunovic, R. Lin, M. Scharfe, A. P. Amrute, S. Mitchell, R. Hauert, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2017, 56, 9791-9795. [41] M. Moser, I. Czekaj, N. López, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2014, 53, 8628-8633. [42] M. Moser, V. Paunovic, Z. Guo, L. Szentmiklósi, M. G. Hevia, M. Higham, N. López, D. Teschner, J. Pérez-Ramírez, Chem. Sci., 2016, 7, 2996-3005. [43] G. Zichittella, V. Paunovic, A. P. Amrute, J. Pérez-Ramírez, ACS Catal., 2017, 7, 1805-1817. [44] E. Peringer, S. G. Podkolzin, M. E. Jones, R. Olindo, J. A. Lercher, Top. Catal., 2006, 38, 211-220. [45] V. Paunovic, G. Zichittella, P. Hemberger, A. Bodi, J. Pérez-Ramírez, ACS Catal., 2019, 9, 1710-1725. [46] V. Paunovic, G. Zichittella, R. Verel, A. P. Amrute, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2016, 55, 15619-15623. [47] G. Zichittella, N. Aellen, V. Paunovic, A. P. Amrute, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2017, 56, 13670-13674. [48] G. Zichittella, J. Lüthi, V. Paunovic, J. Pérez-Ramírez, Energy Technol., 2019, doi:10.1002/ente.201900622. [49] J. He, T. Xu, Z. Wang, Q. Zhang, W. Deng, Y. Wang, Angew. Chem. Int. Ed., 2012, 51, 2438-2442. [50] V. Paunovic, G. Zichittella, S. Mitchell, R. Hauert, J. Pérez-Ramírez, ACS Catal., 2018, 8, 291-303. [51] V. Paunovic, M. Artusi, R. Verel, F. Krumeich, R. Hauert, J. Pérez-Ramírez, J. Catal., 2018, 363, 69-80. [52] G. Zichittella, B. Puértolas, V. Paunovic, T. Block, R. Pöttgen, J. Pérez-Ramírez, Catal. Sci. Technol., 2018, 8, 2231-2243. [53] F. Yu, X. Wu, Q. Zhang, Y. Wang, Chin. J. Catal., 2014, 35, 1260-1266. [54] Q. Xie, H. Zhang, J. Kang, J. Cheng, Q. Zhang, Y. Wang, ACS Catal., 2018, 8, 4902-4916. [55] G. Zichittella, S. Stähelin, F. M. Goedicke, J. Pérez-Ramírez, ACS Catal., 2019, 9, 5772-5782. [56] A. E. Schweizer, M. E. Jones, D. A. Hickman, US Patent, 6984763 B2, 2006. [57] J. P. Henley, M. E. Jones, D. A. Hickman, K. A. Marshall, D. J. Reed, W. D. Clarke, M. M. Olken, L. E. Walko, US Patent, 6933417 B1, 2005. [58] G. Zichittella, M. Scharfe, B. Puértolas, V. Paunovic, P. Hemberger, A. Bodi, L. Szentmiklósi, N. López, J. Pérez-Ramírez, Angew. Chem. Int. Ed., 2019, 58, 5877-5881. |
[1] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[2] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[3] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[4] | Zhipeng Guan, Dongfeng Yang, Zhao Liu, Shuxiang Zhu, Xingxing Zhong, Huamin Wang, Xiangwei Li, Xiaotian Qi, Hong Yi, Aiwen Lei. Regioselective electrochemical oxidative radical ortho-(4 + 2)/ipso-(3 + 2) cyclization [J]. Chinese Journal of Catalysis, 2023, 52(9): 144-153. |
[5] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[6] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[7] | Yinqi Wu, Qianqian Chen, Qi Chen, Qiang Geng, Qiaoyu Zhang, Yu-Cong Zheng, Chen Zhao, Yan Zhang, Jiahai Zhou, Binju Wang, Jian-He Xu, Hui-Lei Yu. Precise regulation of the substrate selectivity of Baeyer-Villiger monooxygenase to minimize overoxidation of prazole sulfoxides [J]. Chinese Journal of Catalysis, 2023, 51(8): 157-167. |
[8] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[9] | Chun Yin, Fulin Yang, Shuli Wang, Ligang Feng. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 225-236. |
[10] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[11] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[12] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[13] | Shuaiqi Meng, Zhongyu Li, Peng Zhang, Francisca Contreras, Yu Ji, Ulrich Schwaneberg. Deep learning guided enzyme engineering of Thermobifida fusca cutinase for increased PET depolymerization [J]. Chinese Journal of Catalysis, 2023, 50(7): 229-238. |
[14] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[15] | Guoqing An, Xiaowei Zhang, Canyang Zhang, Hongyi Gao, Siqi Liu, Geng Qin, Hui Qi, Jitti Kasemchainan, Jianwei Zhang, Ge Wang. Metal-organic-framework-based materials as green catalysts for alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 50(7): 126-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||