Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (6): 951-962.DOI: 10.1016/S1872-2067(20)63557-4
• Reviews • Previous Articles Next Articles
Linxi Wanga, Shyam Deoa, Kerry Dooleyc, Michael J. Janika, Robert M. Riouxa,b
Received:
2019-11-05
Revised:
2019-12-02
Online:
2020-06-18
Published:
2020-01-21
Contact:
10.1016/S1872-2067(20)63557-4
Linxi Wang, Shyam Deo, Kerry Dooley, Michael J. Janik, Robert M. Rioux. Influence of metal nuclearity and physicochemical properties of ceria on the oxidation of carbon monoxide[J]. Chinese Journal of Catalysis, 2020, 41(6): 951-962.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63557-4
[1] H. S. Gandhi, A. G. Piken, M. Shelef, R. G. Delosh, SAE Tech. Pap., 1976, 760201. [2] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev., 2016, 116, 5987-6041. [3] E. Aneggi, M. Boaro, C. De Leitenburg, G. Dolcetti, A. Trovarelli, J. Alloys Compd., 2006, 408-412, 1096-1102. [4] R. J. Gorte, AIChE J., 2010, 56, 1126-1135. [5] A. Trovarelli, C. De Leitenburg, M. Boaro, G. Dolcetti, Catal. Today, 1999, 50, 353-367. [6] L. Liu, A. Corma, Chem. Rev., 2018, 118, 4981-5079. [7] L. R. Morss, Handbook on the Physics and Chemistry of Rare Earths; Elsevier:New York, 1994, Vol. 18. [8] D. R. Mullins, Surf. Sci. Rep., 2015, 70, 42-85. [9] G. J. VanHandel, R. N. Blumenthal, J. Electrochem. Soc., 1974, 121, 1198-1202. [10] Z. Wu, M. Li, J. Howe, H. M. Meyer Iii, S. H. Overbury, Langmuir, 2010, 26, 16595-16606. [11] P. Mars, D. W. Van Krevelen, Chem. Eng. Sci., 1954, 3, 41-59. [12] R. Burch, Phys. Chem. Chem. Phys., 2006, 8, 5483-5500. [13] F. Mariño, G. Baronetti, M. Laborde, N. Bion, A. Le Valant, F. Epron, D. Duprez, Int. J. Hydrogen Energy, 2008, 33, 1345-1353. [14] M. Piumetti, T. Andana, S. Bensaid, N. Russo, D. Fino, R. Pirone, Nanoscale Res. Lett., 2016, 11, 1-8. [15] T. Désaunay, G. Bonura, V. Chiodo, S. Freni, J. P. Couzinié, J. Bourgon, A. Ringuedé, F. Labat, C. Adamo, M. Cassir, J. Catal., 2013, 297, 193-201. [16] A. Cao, R. Lu, G. Veser, Phys. Chem. Chem. Phys., 2010, 12, 13499-13510. [17] J. Paier, C. Penschke, J. Sauer, Chem. Rev., 2013, 113, 3949-3985. [18] A. Ruiz Puigdollers, P. Schlexer, S. Tosoni, G. Pacchioni, ACS Catal., 2017, 7, 6493-6513. [19] D. B. Pal, R. Chand, S. N. Upadhyay, P. K. Mishra, Renew. Sustain. Energy Rev., 2018, 93, 549-565. [20] J. Liu, ACS Catal., 2017, 7, 34-58. [21] B. C. Gates, Trends Chem., 2019, 1, 99-110. [22] B. Han, R. Lang, B. Qiao, A. Wang, T. Zhang, Chin. J. Catal., 2017, 38, 1498-1507. [23] B. Hammer, J. K. Nerskov, Nature, 1995, 376, 238-240. [24] M. A. Centeno, T. Ramírez Reina, S. Ivanova, O. H. Laguna, J. A. Odriozola, Catalysts, 2016, 6, 158/1-158/30. [25] M. Han, X. Wang, Y. Shen, C. Tang, G. Li, R. L. Smith, J. Phys. Chem. C, 2010, 114, 793-798. [26] J. Guzman, S. Carrettin, A. Corma, J. Am. Chem. Soc., 2005, 127, 3286-3287. [27] S. Carrettin, P. Concepción, A. Corma, J. M. López Nieto, V. F. Puntes, Angew. Chemie Int. Ed., 2004, 43, 2538-2540. [28] M. Boronat, A. Leyva-Perez, A. Corma, Acc. Chem. Res., 2014, 47, 834-844. [29] J. A. von Bokhoven, J. T. D. Miller, J. Phys. Chem. C, 2007, 111, 9245-9249. [30] A. Y. Klyushin, M. T. Greiner, X. Huang, T. Lunkenbein, X. Li, O. Timpe, M. Friedrich, M. Hävecker, A. Knop-Gericke, R. Schlögl, Acs Catal., 2016, 6, 3372-3380. [31] S. Zhang, X.-S. Li, B. Chen, X. Zhu, C. Shi, A.-M. Zhu, ACS Catal., 2014, 4, 3481-3489. [32] A. Tereshchenko, V. Polyakov, A. Guda, T. Lastovina, Y. Pimonova, A. Bulgakov, A. Tarasov, L. Kustov, V. Butova, A. Trigub, A. Soldatov, Catalysts, 2019, 9, 385. [33] Y. Yang, K. M. Saoud, V. Abdelsayed, G. Glaspell, S. Deevi, M. S. El-Shall, Catal. Commun., 2006, 7, 281-284. [34] Z. Hu, X. Liu, D. Meng, Y. Guo, Y. Guo, G. Lu, ACS Catal., 2016, 6, 2265-2279. [35] H.-H. Liu, Y. Wang, A.-P. Jia, S.-Y. Wang, F. Luo, J.-Q. Lu, Appl. Surf. Sci., 2014, 314, 725-734. [36] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F. C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schloegl, J. Catal., 2006, 237, 1-16. [37] P. Bera, A. Gayen, M. S. Hegde, N. P. Lalla, L. Spadaro, F. Frusteri, F. Arena, J. Phys. Chem. B, 2003, 107, 6122-6130. [38] Y. Gao, W. Wang, S. Chang, W. Huang, ChemCatChem, 2013, 5, 3610-3620. [39] C. S. Polster, R. Zhang, M. T. Cyb, J. T. Miller, C. D. Baertsch, J. Catal., 2010, 273, 50-58. [40] M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science, 2013, 341, 771-773. [41] F. Morfin, T.-S. Nguyen, J.-L. Rousset, L. Piccolo, Appl. Catal. B, 2016, 197, 2-13. [42] W. Song, E. J. M. Hensen, Catal. Sci. Technol., 2013, 3,3020-3029. [43] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science, 2003, 301, 935-938. [44] H. Y. Kim, H. M. Lee, G. Henkelman, J. Am. Chem. Soc., 2012, 134, 1560-1570. [45] H. Ha, S. Yoon, K. An, H. Y. Kim, ACS Catal., 2018, 8, 11491-11501. [46] W. Song, Y. Su, E. J. M. Hensen, J. Phys. Chem. C, 2015, 119, 27505-27511. [47] C. J. Zhang, P. Hu, J. Am. Chem. Soc., 2001, 123, 1166-1172. [48] F. Mariño, C. Descorme, Duprez, D. Appl. Catal. B, 2004, 54, 59-66. [49] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F. C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schloegl, J. Catal., 2006, 237, 17-28. [50] D. Teschner, A. Wootsch, O. Pozdnyakova-Tellinger, J. Kröhnert, E. M. Vass, M. Hävecker, S. Zafeiratos, P. Schnörch, P. C. Jentoft, A. Knop-Gericke, R. Schloegl, J. Catal., 2007, 249, 318-327. [51] O. Pozdnyakova-Tellinger, D. Teschner, J. Kröhnert, F. C. Jentoft, A. Knop-Gericke, R. Schlögl, A. Wootsch, J. Phys. Chem. C, 2007, 111, 5426-5431. [52] A. Luengnaruemitchai, S. Osuwan, E. Gulari, Int. J. Hydrogen Energy, 2004, 29, 429-435. [53] F. Arena, P. Famulari, G. Trunfio, G. Bonura, F. Frusteri, L. Spadaro, Appl. Catal. B, 2006, 66, 81-91. [54] S. Scirè, C. Crisafulli, P. M. Riccobene, G. Patanè, A. Pistone, Appl. Catal. A, 2012, 417-418, 66-75. [55] W. Deng, J. De Jesus, H. Saltsburg, M. Flytzani-Stephanopoulos, Appl. Catal. A, 2005, 291, 126-135. [56] M. Cargnello, C. Gentilini, T. Montini, E. Fonda, S. Mehraeen, M. Chi, M. Herrera-Collado, N. D. Browning, S. Polizzi, L. Pasquato, P. Fornasiero, Chem. Mater., 2010, 22, 4335-4345. [57] G. Avgouropoulos, T. Ioannides, H. K. Matralis, J. Batista, S. Hocevar, Catal. Lett., 2001, 73, 33-40. [58] J. da, S. L. Fonseca, H. S. Ferreira, N. Bion, L. Pirault-Roy, M. Do, M. do C. Rangel, D. Duprez, F. Epron, Catal. Today, 2012, 180, 34-41. [59] N. Bion, E. Florence, M. Moreno, F. Marino, D. Duprez, Top. Catal., 2008, 51, 76-88. [60] L.-C. Chung, C.-T. Yeh, Catal. Commun., 2008, 9, 670-674. [61] C. R. Jung, J. Han, S. W. Nam, T.-H. Lim, S.-A. Hong, H.-I. Lee, Catal. Today, 2004, 93-95, 183-190. [62] C. G. Maciel, T. de F. Silva, M. I. Hirooka, M. N. Belgacem, J. M. Assaf, Fuel, 2012, 97, 245-252. [63] D. Gamarra, C. Belver, M. Ferná Ndez-García, A. Martínez-Arias, J. Am. Chem. Soc., 2007, 129, 12064-12065. [64] A. Hornés, A. B. Hungría, P. Bera, A. Ló pez Cá mara, M. Ferná ndez-García, A. Martínez-Arias, L. Barrio, M. Estrella, G. Zhou, J. J. Fonseca, J. C. Hanson, J. A. Rodriguez, J. Am. Chem. Soc., 2010, 132, 34-35. [65] X. Guo, R. Zhou, Catal. Sci. Technol., 2016, 6, 3862-3871. [66] M. Monte, G. Munuera, D. Costa, J. C. Conesa, A. Martínez-Arias, Phys. Chem. Chem. Phys., 2015, 17, 29995-30004. [67] Y. Xie, J. Wu, G. Jing, H. Zhang, S. Zeng, X. Tian, X. Zou, J. Wen, H. Su, C.-J. Zhong, P. Cui, Appl. Catal. B, 2018, 239, 665-676. [68] M. Monte, D. Gamarra, A. López Cámara, S. B. Rasmussen, N. Gyorffy, Z. Schay, A. Martínez-Arias, J. C. Conesa, Catal. Today, 2014, 229, 104-113. [69] G. Jing, L. Zhang, Y. Ma, J. Wu, Q. Wang, G. Wu, L. Yan, S. Zeng, CrystEngComm, 2019, 21, 363-371. [70] B. Qiao, J. Liu, Y.-G. Wang, Q. Lin, X. Liu, A. Wang, J. Li, T. Zhang, J. Liu, ACS Catal., 2015, 5, 6249-6254. [71] K. Ding, A. Gulec, A. M Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science, 2015, 350, 189-192. [72] V. L. Zholobenko, G.-D. Lei, B. T. Carvill, B. A. Lerner, W. M. H. Sachtler, J. Chem. Soc. Faraday Trans., 1994, 90, 233-238. [73] L. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. W. Graham, X. Pan, P. Christopher, J. Am. Chem. Soc., 2017, 139, 14150-14165. [74] J. Li, Y. Tang, Y. Ma, Z. Zhang, F. Tao, Y. Qu, ACS Appl. Mater. Interfaces, 2018, 10, 38140. [75] C. Wang, X.-K. Gu, H. Yan, Y. Lin, J. Li, D. Liu, W.-X. Li, J. Lu, ACS Catal., 2017, 7, 887-891. [76] L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. Pereira Hernandez, A. De la Riva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, Y. Wang, Science, 2017, 358, 1419-1423. [77] H. Wang, J. Shen, J. Huang, T. Xu, J. Zhu, Y. Zhu, C. Li, Nanoscale, 2017, 9, 16817-16825. [78] G. Spezzati, Y. Su, J. P. Hofmann, A. D. Benavidez, A. T. DeLaRiva, J. McCabe, A. K. Datye, E. J. M. Hensen, ACS Catal., 2017, 7, 6887-6891. [79] G. Spezzati, A. D. Benavidez, A. T. DeLaRiva, Y. Su, J. P. Hofmann, S. Asahina, E. J. Olivier, J. H. Neethling, J. T. Miller, A. K. Datye, E. J. M. Hensen, Appl. Catal. B, 2019, 243, 36-46. [80] Y.-Q. Su, I. A. W. Filot, J.-X. Liu, E. J. M. Hensen, ACS Catal., 2018, 8, 75-80. [81] W. Song, E. J. M. Hensen, J. Phys. Chem. C, 2013, 117, 7721-7726. [82] M. Farnesi Camellone, S. Fabris, J. Am. Chem. Soc., 2009, 131, 10473-10483. [83] J.-C. Liu, Y.-G. Wang, J. Li, J. Am. Chem. Soc., 2017, 139, 6190-6199. [84] Y. G. Wang, D. Mei, V. A. Glezakou, J. Li, R. Rousseau, Nat. Commun., 2015, 6, 6511. |
[1] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[2] | Yang Ou, Songda Li, Fei Wang, Xinyi Duan, Wentao Yuan, Hangsheng Yang, Ze Zhang, Yong Wang. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments [J]. Chinese Journal of Catalysis, 2022, 43(8): 2026-2033. |
[3] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
[4] | Xiaoling Liu, Lei Chen, Hongzhong Xu, Shi Jiang, Yu Zhou, Jun Wang. Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid [J]. Chinese Journal of Catalysis, 2021, 42(6): 994-1003. |
[5] | Yanan Gao, Fu-Kuo Chiang, Shaojie Li, Long Zhang, Peng Wang, Emiel J. M. Hensen. Influence of hematite morphology on the CO oxidation performance of Au/α-Fe2O3 [J]. Chinese Journal of Catalysis, 2021, 42(4): 658-665. |
[6] | Fan Wu, Lei He, Wen-Cui Li, Rao Lu, Yang Wang, An-Hui Lu. Highly dispersed boron-nitride/CuOx-supported Au nanoparticles for catalytic CO oxidation at low temperatures [J]. Chinese Journal of Catalysis, 2021, 42(3): 388-395. |
[7] | Chunyan Dong, Yan Zhou, Na Ta, Wenlu Liu, Mingrun Li, Wenjie Shen. Shape impact of nanostructured ceria on the dispersion of Pd species [J]. Chinese Journal of Catalysis, 2021, 42(12): 2234-2241. |
[8] | Xiang Wang, Meijun Li, Zili Wu. In situ spectroscopic insights into the redox and acid-base properties of ceria catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2122-2140. |
[9] | Zhongjing Deng, Xingqun Zheng, Mingming Deng, Li Li, Li Jing, Zidong Wei. Catalytic activity of V2CO2 MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions: A density functional theory calculation study [J]. Chinese Journal of Catalysis, 2021, 42(10): 1659-1666. |
[10] | Bingyu Lin, Yuyuan Wu, Biyun Fang, Chunyan Li, Jun Ni, Xiuyun Wang, Jianxin Lin, Lilong Jiang. Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts [J]. Chinese Journal of Catalysis, 2021, 42(10): 1712-1723. |
[11] | Zhu-Yuan Zheng, Dong Wang, Yi Zhang, Fan Yang, Xue-Qing Gong. Structures and reactivities of the CeO2/Pt(111) reverse catalyst: A DFT+U study [J]. Chinese Journal of Catalysis, 2020, 41(9): 1360-1368. |
[12] | Bin Yang, Wei Deng, Limin Guo, Tatsumi Ishihara. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH [J]. Chinese Journal of Catalysis, 2020, 41(9): 1348-1359. |
[13] | Panpan Wang, Jiahao Duan, Jie Wang, Fuming Mei, Peng Liu. Elucidating structure-performance correlations in gas-phase selective ethanol oxidation and CO oxidation over metal-doped γ-MnO2 [J]. Chinese Journal of Catalysis, 2020, 41(8): 1298-1310. |
[14] | Yan Zhou, Aling Chen, Jing Ning, Wenjie Shen. Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts [J]. Chinese Journal of Catalysis, 2020, 41(6): 928-937. |
[15] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. Lattice oxygen activation in transition metal doped ceria [J]. Chinese Journal of Catalysis, 2020, 41(6): 977-984. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||