Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (4): 971-1000.DOI: 10.1016/S1872-2067(21)63934-7
• Reviews • Previous Articles Next Articles
Yaping Zhanga,c, Jixiang Xua,b,*(), Jie Zhoua,c, Lei Wanga,c,#()
Received:
2021-06-03
Accepted:
2021-06-03
Online:
2022-03-05
Published:
2022-03-01
Contact:
Jixiang Xu, Lei Wang
Supported by:
Yaping Zhang, Jixiang Xu, Jie Zhou, Lei Wang. Metal-organic framework-derived multifunctional photocatalysts[J]. Chinese Journal of Catalysis, 2022, 43(4): 971-1000.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63934-7
Fig. 5. (a) Schematic formation of different Co3O4 structures; (b-e) TEM images of various Co3O4 structures. Reprinted with permission from Ref. [119]. Copyright 2018, American Chemical Society.
Fig. 6. (a) SEM image of ZIF-8; (b) TG curves of ZIF-8; (c) The synthesis process of ZnO; (d,e) SEM and TEM images of ZnO obtained by two-step calcination method. Reprinted with permission from Ref. [120]. Copyright 2016, Elsevier.
Fig. 7. (a) The products of MIL-88A(Fe) annealed in different atmosphere. Reprinted with permission from Ref. [122]. Copyright 2020, Elsevier. (b) The products of Zn-MOF annealed at different temperatures and atmospheres. Reprinted with permission from Ref. [123]. Copyright 2020, Elsevier.
Fig. 8. (a) Preparation of core-shell Fe3O4-CuO@carbon hollow sphere composite; (b) The illustration of freezing-replacement post-treatment on the structure of Fe3O4-CuO@carbon sphere; SEM images of original (c) and freezing-replacement treated (d) Fe3O4-CuO@carbon. Reprinted with permission from Ref. [126]. Copyright 2020, Elsevier.
Fig. 9. (a) Schematic illustration for preparing Co4S3. Reprinted with permission from Ref. [129]. Copyright 2018, Elsevier. (b) Schematic illustration for preparing Fe-Ni-P nanotubes using Fe-Ni-MOF as templates. Reprinted with permission from Ref. [131]. Copyright 2020, Elsevier.
Fig. 10. (a) Schematic preparation processes of Bismuth oxyhalides. Reprinted with permission from Ref. [102]. Copyright 2020, Elsevier. (b) Schematic diagram of two-step synthesis of Fe2N nanocubes. Reprinted with permission from Ref. [142]. Copyright 2020, The Royal Society of Chemistry.
Fig. 12. (a) Scheme illustration for the synthesis of ZIF-derived ZnS/ZnIn2S4 heterojunction; (b) The SEM image of the ZnS/ZnIn2S4 heterojunction; (c) Band structure and proposed charge transfer mechanism for ZnS/ZnIn2S4 heterojunction photocatalyst; (d) Photocatalytic hydrogen evolution by series photocatalysts. Reprinted with permission from Ref. [152]. Copyright 2020, The Royal Society of Chemistry.
Fig. 13. XRD patterns (a), H2 evolution rates (b) over MIL-125-NH2-derived TiO2 prepared at different temperatures; (c) The synthesis process of MIL-125-NH2-derived TiO2; (d) TEM images and selected-area electron diffraction pattern of MIL-125-NH2-derived TiO2 synthesized through calcination at 600 °C for 1 h. Reprinted with permission from Ref. [58]. Copyright 2018, American Chemical Society.
Fig. 14. (a) Self-recognition of mixed metal cations during the sulfuration of Co/Cd-MOF into Co9S8/CdS; (b) Scheme illustration for the transfer route of photogenerated carries in the Z-scheme Co9S8/CdS during H2 evolution and BA oxidation; (c) Photocatalytic H2 evolution with different catalysts; (d) Photocatalytic conversion rate of BA to BAD. Reprinted with permission from Ref. [164]. Copyright 2020, Elsevier.
Fig. 15. (a) Schematic preparation process of hollow Cu-TiO2/C; (b) SEM image of Cu-TiO2/C. Reprinted with permission from Ref. [172]. Copyright 2018, The Royal Society of Chemistry. (c) Schematic preparation process of hollow ZnFe2O4/AgCl/Ag/C nanotube; (d) SEM image of ZnFe2O4/AgCl/Ag/C; (e) The scattering path of incident light in the porous nanotube structure. Reprinted with permission from Ref. [173]. Copyright 2021, Elsevier.
Fig. 16. (a) Schematic illustration of the fabrication of ZnOZIF-8/rGO/carbon sponge; (b) Schematic diagram of the photogenerated carrier transfer process in ZnOZIF-8/rGO/carbon sponge. Reprinted with permission from Ref. [191]. Copyright 2018, American Chemical Society. (c) Schematic the synthesis process of CdS/ZCO nanocomposites; (d) Photocurrent response of CdS/ZCO; (e) Light irradiation route in CdS/ZCO. Reprinted with permission from Ref. [192]. Copyright 2018, The Royal Society of Chemistry.
Fig. 17. (a) Schematic preparation process of Co3O4/ZnO@ZnS photocatalysts; Calculated Fermi levels of ZnO (101) (b) and ZnS (111) (c) planes; (d) Possible mechanism for the photocatalytic over Co3O4/ZnO@ZnS; (e) H2 and O2 production rates of Co3O4/ZnO@ZnS without sacrificial agent. Reprinted with permission from Ref. [193]. Copyright 2020, Elsevier.
MOF precursors | Photocatalyst | Synthesis strategy | Light | Sacrificial agent | Activity (μmol h-1g-1) | Ref. |
---|---|---|---|---|---|---|
In-MOF | In2O3/g-C3N4 | calcined annealing (In-MOF precursor + melamine) | visible light | TEOA | 1374 | [ |
NH2-MIL-125(Ti/Cu) | TiO2/CuxO/C | one-step direct carbonization | UV-visible light | CH3OH | 3298 | [ |
ZIF-67 | TiO2-Ti3C2-CoSx | solvothermal method | UV-visible light | CH3OH | 950 | [ |
Cd-MOF | CdS/MoS2 | sulfurization | UV-visible light | Na2S + Na2SO3 | 5587 | [ |
HKUST-1 | Cu-TiO2/C nanospheres | calcination and etching | simulated sunlight | CH3OH | 14049 | [ |
Ni-MOF | CdS-NiO-P | annealing and ultrasonication | UV-visible light | DMPO | 14250 | [ |
NH2-MIL-125(Ti) | MoS2@TiO2 | thermally treated (thiourea and sodium molybdate dihydrate) | visible light | TEOA | 10046 | [ |
MIL-68(In) | In2O3@g-C3N4 | annealing | visible light | 0.5 mol/L Na2SO3 + Na2S | 258.8 | [ |
MOF-74-Zn/Fe | ZnFe2O4/AgCl/Ag/C | thermal treatment | visible light | 0.1 mol/L Na2SO3 + 0.1 mol/L Na2S | 7524 | [ |
MIL-125 | g-C3N4/TiO2 | facile pyrolysis | UV-visible light | TEOA | 606 | [ |
ZIF-8 | ZnOZIF-8/rGO/carbon sponge | dipping-pyrolysis | simulated solar light | CH3OH | 14.6 | [ |
Cd-Zn-Fe PBA | Cd0.5Zn0.5S | solvothermal | visible light | Na2S (0.35 mol/L) + Na2SO3 (0.25 mol/L) | 4341.6 | [ |
Cd-Fe-PBA | CdS | microwave-assisted hydrothermal process | visible light | Na2S + Na2SO3 | 3051.4 | [ |
NH2-MIL-125 | NiS/CdS/TiO2 | hydrolysis combining sulfidation process | visible light | Na2SO3 (0.25 mol/L) + Na2S (0.35 mol/L) | 2149.15 | [ |
Ce-ZIF-8 | CeO2/ZnS-CuS | calcining and vulcanizing and in-situ cation exchange method | visible light | CH3OH | 13470 | [ |
Fe-MOF | g-Fe2O3/rGO-w | thermolysis and wet chemical technique | visible light | TEA | 318 | [ |
Al-MOF | CdX-g-C3N4-NPC | annealing | simulated solar light | lactic acid | 116.5 | [ |
NH2-MIL-125 | H-TiO2/CdS | post solvothermal method | visible light | Na2S (0.2 mol/L) + Na2SO3 (0.3 mol/L) | 2997.482 | [ |
MOF-199 | Cu-Cu2O/TiO2 | calcining | UV-visible light | glycerol | 15130 | [ |
Co-MOF | Co4S3/CdS | hydrothermal reaction | visible light | lactic acid | 5892.6 | [ |
ZnCo-MOFs | Co3O4/ZnO@ZnS | calcining and solvothermal method | 780 nm > λ > 320 nm | CH3OH | 3853 | [ |
ZIF-67 | Co9S8@ZnAgInS | sulfidation reaction and thermal treatment | simulated solar light | TEOA | 9395.3 | [ |
ZnCo-ZIF | CdS/ZnXCo3‒xO4 | aminated in an oil bath and hydrothermal method | UV-visible light | lactic acid | 3978.6 | [ |
ZIF-8 | Co/NGC@ZnIn2S4 | situ solution growth method and high-temperature pyrolysis and acid leaching | visible light | TEOA | 11270 | [ |
ZnCo-ZIF | Pt-ZnO-Co3O4 Pt-ZnS-CoS Pt-Zn3P2-CoP | oxidation sulfurization phosphidation | UV-vis light | methanol | 7800 8210 9150 | [ |
Prussian blue | Fe2N | annealing + ammoniated | visible light | TEOA | 14500 | [ |
Fe-Ni-MIL-88 | Fe-Ni-P nanotubes | phosphating method | visible light | TEOA | 5420 | [ |
Co-MOF | Co4S3/CdS | annealing + sulfurization | simulated solar light | lactic acid | 12360 | [ |
CAU-17 | Bi0.5Y0.5VO4 | annealing | UV-vis light | — | 124.2 | [ |
ZIF-8 | ZnS/ZnIn2S4 | sulfurization | simulated solar light | TEOA | 453.4 | [ |
MIL-125@ZIF-67 HMOF | TiO2/Co3O4/Ni | annealing | UV-visible light | free | 122.67 | [ |
MIL-125-NH2 | TiO2 | annealing | UV-visible light | methanol | 1394 | [ |
Co/Cd-MOF | Co9S8/CdS | sulfurization | visible light | free | 61924 | [ |
NH2-MIL-125(Ti) | N-C-TiO2/C | one-step pyrolysis | UV-visible light | methanol | 426 | [ |
Table 1 A summary of MOF-derived photocatalysts for photocatalytic H2 evolution.
MOF precursors | Photocatalyst | Synthesis strategy | Light | Sacrificial agent | Activity (μmol h-1g-1) | Ref. |
---|---|---|---|---|---|---|
In-MOF | In2O3/g-C3N4 | calcined annealing (In-MOF precursor + melamine) | visible light | TEOA | 1374 | [ |
NH2-MIL-125(Ti/Cu) | TiO2/CuxO/C | one-step direct carbonization | UV-visible light | CH3OH | 3298 | [ |
ZIF-67 | TiO2-Ti3C2-CoSx | solvothermal method | UV-visible light | CH3OH | 950 | [ |
Cd-MOF | CdS/MoS2 | sulfurization | UV-visible light | Na2S + Na2SO3 | 5587 | [ |
HKUST-1 | Cu-TiO2/C nanospheres | calcination and etching | simulated sunlight | CH3OH | 14049 | [ |
Ni-MOF | CdS-NiO-P | annealing and ultrasonication | UV-visible light | DMPO | 14250 | [ |
NH2-MIL-125(Ti) | MoS2@TiO2 | thermally treated (thiourea and sodium molybdate dihydrate) | visible light | TEOA | 10046 | [ |
MIL-68(In) | In2O3@g-C3N4 | annealing | visible light | 0.5 mol/L Na2SO3 + Na2S | 258.8 | [ |
MOF-74-Zn/Fe | ZnFe2O4/AgCl/Ag/C | thermal treatment | visible light | 0.1 mol/L Na2SO3 + 0.1 mol/L Na2S | 7524 | [ |
MIL-125 | g-C3N4/TiO2 | facile pyrolysis | UV-visible light | TEOA | 606 | [ |
ZIF-8 | ZnOZIF-8/rGO/carbon sponge | dipping-pyrolysis | simulated solar light | CH3OH | 14.6 | [ |
Cd-Zn-Fe PBA | Cd0.5Zn0.5S | solvothermal | visible light | Na2S (0.35 mol/L) + Na2SO3 (0.25 mol/L) | 4341.6 | [ |
Cd-Fe-PBA | CdS | microwave-assisted hydrothermal process | visible light | Na2S + Na2SO3 | 3051.4 | [ |
NH2-MIL-125 | NiS/CdS/TiO2 | hydrolysis combining sulfidation process | visible light | Na2SO3 (0.25 mol/L) + Na2S (0.35 mol/L) | 2149.15 | [ |
Ce-ZIF-8 | CeO2/ZnS-CuS | calcining and vulcanizing and in-situ cation exchange method | visible light | CH3OH | 13470 | [ |
Fe-MOF | g-Fe2O3/rGO-w | thermolysis and wet chemical technique | visible light | TEA | 318 | [ |
Al-MOF | CdX-g-C3N4-NPC | annealing | simulated solar light | lactic acid | 116.5 | [ |
NH2-MIL-125 | H-TiO2/CdS | post solvothermal method | visible light | Na2S (0.2 mol/L) + Na2SO3 (0.3 mol/L) | 2997.482 | [ |
MOF-199 | Cu-Cu2O/TiO2 | calcining | UV-visible light | glycerol | 15130 | [ |
Co-MOF | Co4S3/CdS | hydrothermal reaction | visible light | lactic acid | 5892.6 | [ |
ZnCo-MOFs | Co3O4/ZnO@ZnS | calcining and solvothermal method | 780 nm > λ > 320 nm | CH3OH | 3853 | [ |
ZIF-67 | Co9S8@ZnAgInS | sulfidation reaction and thermal treatment | simulated solar light | TEOA | 9395.3 | [ |
ZnCo-ZIF | CdS/ZnXCo3‒xO4 | aminated in an oil bath and hydrothermal method | UV-visible light | lactic acid | 3978.6 | [ |
ZIF-8 | Co/NGC@ZnIn2S4 | situ solution growth method and high-temperature pyrolysis and acid leaching | visible light | TEOA | 11270 | [ |
ZnCo-ZIF | Pt-ZnO-Co3O4 Pt-ZnS-CoS Pt-Zn3P2-CoP | oxidation sulfurization phosphidation | UV-vis light | methanol | 7800 8210 9150 | [ |
Prussian blue | Fe2N | annealing + ammoniated | visible light | TEOA | 14500 | [ |
Fe-Ni-MIL-88 | Fe-Ni-P nanotubes | phosphating method | visible light | TEOA | 5420 | [ |
Co-MOF | Co4S3/CdS | annealing + sulfurization | simulated solar light | lactic acid | 12360 | [ |
CAU-17 | Bi0.5Y0.5VO4 | annealing | UV-vis light | — | 124.2 | [ |
ZIF-8 | ZnS/ZnIn2S4 | sulfurization | simulated solar light | TEOA | 453.4 | [ |
MIL-125@ZIF-67 HMOF | TiO2/Co3O4/Ni | annealing | UV-visible light | free | 122.67 | [ |
MIL-125-NH2 | TiO2 | annealing | UV-visible light | methanol | 1394 | [ |
Co/Cd-MOF | Co9S8/CdS | sulfurization | visible light | free | 61924 | [ |
NH2-MIL-125(Ti) | N-C-TiO2/C | one-step pyrolysis | UV-visible light | methanol | 426 | [ |
Equation | Reaction | E0vs. NHE |
---|---|---|
1 | CO2 + 2H++ 2e-→ HCOOH | -0.61 V |
2 | CO2 + 2H++ 2e-→ CO + H2O | -0.53 V |
3 | CO2 + 4H++ 4e-→ HCHO + H2O | -0.48 V |
4 | CO2 + 6H++ 6e-→ CH3OH + H2O | -0.38 V |
5 | CO2 + 8H++ 8e-→ CH4 + 2H2O | -0.24 V |
6 | 2H++ 2e-→ H2 | -0.41 V |
Table 2 The different products of CO2 reduction and the corresponding reduction potentials (pH = 7).
Equation | Reaction | E0vs. NHE |
---|---|---|
1 | CO2 + 2H++ 2e-→ HCOOH | -0.61 V |
2 | CO2 + 2H++ 2e-→ CO + H2O | -0.53 V |
3 | CO2 + 4H++ 4e-→ HCHO + H2O | -0.48 V |
4 | CO2 + 6H++ 6e-→ CH3OH + H2O | -0.38 V |
5 | CO2 + 8H++ 8e-→ CH4 + 2H2O | -0.24 V |
6 | 2H++ 2e-→ H2 | -0.41 V |
Fig. 18. Scheme illustration for the preparation and SEM images of In2S3-CdIn2S4 (a) and ZnIn2S4-In2O3 (b). Reprinted with permission from Ref. [210]. Copyright 2017, American Chemical Society. Reprinted with permission from Ref. [211]. Copyright 2018, American Chemical Society. (c) SEM image of holey Co3O4 nanosheets; (d) The theoretical calculation models of CO2 molecule adsorbed on the surface of Co3O4 bulk (left) and Co3O4 monolayer (right) based on DFT calculations; (e) Evolution of CO and H2 under various reaction conditions. Reprinted with permission from Ref. [212]. Copyright 2019, Elsevier.
Fig. 19. (a) Illustration of the synthetic process of hierarchical FeCoS2-CoS2 double-shelled nanotubes. Reprinted with permission from Ref. [216]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) The synthetic procedure of Co3O4 hierarchical nanosheets; (c) CO2 photoreduction activity and selectivity of different samples. Reprinted with permission from Ref. [217]. Copyright 2019, The Royal Society of Chemistry.
Fig. 20. (a) A schematic synthesis process for the Co1.11Te2@C material. Theoretical calculation results of (b) valence band XPS of Co1.11Te2, (c) DOS/PDOS diagrams, (d) band structure of Co1.11Te2. (e) Photocatalytic CO2 reduction activities of Co1.11Te2@C. Reprinted with permission from Ref. [221]. Copyright 2019, The Royal Society of Chemistry.
Fig. 21. (a) The effect of different samples on the product; (b) The mechanism diagram for photocatalytic CO2 reduction over the composited photocatalyst. Reprinted with permission from Ref. [222]. Copyright 2019, American Chemical Society.
MOF precursor | Photocatalyst | Synthesis strategy | Light | Product | Activity (μmol h-1 g-1) | Ref. |
---|---|---|---|---|---|---|
In-MIL-68 | In2S3-CdIn2S4 | liquid phase sulfidation process + cation exchange reaction | visible light | CO | 825 | [ |
In-MIL-68 | ZnIn2S4-In2O3 | thermal annealing + hydrothermal Reaction | visible light | CO | 3075 | [ |
ZIF-67 | Co3O4 | ion-assistant solvothermal + annealing | visible light | CO | 9040 | [ |
In-MIL-68 | MnS/In2S3 | one-step sulfurizing method | 300 W Xe lamp, 100 mW cm-2 | CO | 58 | [ |
ZnCo-ZIFs | ZnO/Co3O4 | annealing | 300 W Xe lamp | CO | 537.5 | [ |
MIL-88A | FeCoS2-CoS2 | ion-exchange + sulfidation reaction + thermal annealing | visible light | CO | 56200 | [ |
Co-MOF | Co3O4 | annealing | visible light | CO | 1985 | [ |
ZnMn2-ptcda MOF | ZnMn2O4 | annealing | 500 W Xenon arc lamp | CO CH4 | 0.024 — | [ |
Zn-Ni MOF | ZnO/NiO | annealing | 300 W full-spectrum Xe lamp | CH3OH | 1.57 | [ |
Cu/Zn MOF | Cu/Zn bimetallic oxide | annealing | 300 W Xe lamp with full spectrum | CH3OH | 3710 | [ |
ZIF-67 | Co3O4 | annealing | AM 1.5, 100 W/cm2 | CO | 46.3 | [ |
ZIF-67 | Co1.11Te2 | annealing + Te powder | 200 W white LEDs lamp | CO | 11400 | [ |
MIL-101(Fe) | Fe@C | two-step calcination | 300 W Xe lamp | CO | 18301 | [ |
MIL-125(Ti) | Co-Cu/TiO2 | annealing | 300 W Xe lamp | CO CH4 C2H6 C3H8 | 501.9 565.97 892 33.57 | [ |
NH2-MIL-125 | Au/TiO2 | solvothermal synthesis | 200 W Hg/Xe (200-750 nm) lamp | CH4 | — | [ |
ZIF-8 | CuOX@p-ZnO | aerobic pyrolysis | 300 W Xe lamp | CO CH4 C2H4 | 3.3 2.2 2.7 | [ |
Table 3 A summary of MOF-derived photocatalysts for photocatalytic CO2 reduction.
MOF precursor | Photocatalyst | Synthesis strategy | Light | Product | Activity (μmol h-1 g-1) | Ref. |
---|---|---|---|---|---|---|
In-MIL-68 | In2S3-CdIn2S4 | liquid phase sulfidation process + cation exchange reaction | visible light | CO | 825 | [ |
In-MIL-68 | ZnIn2S4-In2O3 | thermal annealing + hydrothermal Reaction | visible light | CO | 3075 | [ |
ZIF-67 | Co3O4 | ion-assistant solvothermal + annealing | visible light | CO | 9040 | [ |
In-MIL-68 | MnS/In2S3 | one-step sulfurizing method | 300 W Xe lamp, 100 mW cm-2 | CO | 58 | [ |
ZnCo-ZIFs | ZnO/Co3O4 | annealing | 300 W Xe lamp | CO | 537.5 | [ |
MIL-88A | FeCoS2-CoS2 | ion-exchange + sulfidation reaction + thermal annealing | visible light | CO | 56200 | [ |
Co-MOF | Co3O4 | annealing | visible light | CO | 1985 | [ |
ZnMn2-ptcda MOF | ZnMn2O4 | annealing | 500 W Xenon arc lamp | CO CH4 | 0.024 — | [ |
Zn-Ni MOF | ZnO/NiO | annealing | 300 W full-spectrum Xe lamp | CH3OH | 1.57 | [ |
Cu/Zn MOF | Cu/Zn bimetallic oxide | annealing | 300 W Xe lamp with full spectrum | CH3OH | 3710 | [ |
ZIF-67 | Co3O4 | annealing | AM 1.5, 100 W/cm2 | CO | 46.3 | [ |
ZIF-67 | Co1.11Te2 | annealing + Te powder | 200 W white LEDs lamp | CO | 11400 | [ |
MIL-101(Fe) | Fe@C | two-step calcination | 300 W Xe lamp | CO | 18301 | [ |
MIL-125(Ti) | Co-Cu/TiO2 | annealing | 300 W Xe lamp | CO CH4 C2H6 C3H8 | 501.9 565.97 892 33.57 | [ |
NH2-MIL-125 | Au/TiO2 | solvothermal synthesis | 200 W Hg/Xe (200-750 nm) lamp | CH4 | — | [ |
ZIF-8 | CuOX@p-ZnO | aerobic pyrolysis | 300 W Xe lamp | CO CH4 C2H4 | 3.3 2.2 2.7 | [ |
Fig. 22. (a) The synthetic process of core-shell ZnO@C-N-Co; (b,c) TEM images of ZnO@C-N-Co; (d) Photodegradation mechanism of organic pollutants over the prepared core-shell ZnO@C-N-Co photocatalyst; (e) Recyclability of the ZnO@C-N-Co nanocomposites in the MO degradation. Reprinted with permission from Ref. [235]. Copyright 2017, The Royal Society of Chemistry.
Fig. 23. (a) Schematic synthesis process of AgCl/Ag/In2O3; (b) The photocatalytic mechanism of Z-scheme AgCl/Ag/In2O3 system; The work function of In2O3 (c), AgCl (d) and Ag (e); (f) Photocatalytic degradation of tetracycline by the various photocatalysts; (g) Photocatalytic Cr (VI) reduction of the various photocatalysts. Reprinted with permission from Ref. [249]. Copyright 2021, Elsevier.
MOF precursor | Photocatalysts | Synthesis strategy | Pollutant | Reactive species | Ref. |
---|---|---|---|---|---|
MIL-88B | AgPt@γ-Fe2O3/CuO | annealing | 4-nitrophenol | •OH/•O2- | [ |
MOF-NiZn | ZnO/Ni0.9Zn0.1O | annealing | MB | •OH | [ |
MIL-125(Ti) | CeOx@C-TiO2 | annealing | tetracycline | •OH/•O2- | [ |
Co/Fe-MOF | CoP/Fe2P@mC | annealing (NaH2PO2) | RhB | h+/•OH/•O2- | [ |
ZIF-8@MIL-68(In) | ZnO@In2O3 | one-step calcination | tetracycline | •OH/•O2- | [ |
Cu-BTC | Cu-doped TiO2 | ultrasonic-assisted precipitation technique | ofloxacin | •OH/•O2- | [ |
In-MIL-68 | In2O3@SnIn4S8 | oil-bath method | Cr (VI) | e- | [ |
Zn/Co-ZIF | ZnO@C-N-Co | directly pyrolyzing | MO | •OH/•O2- | [ |
Zn1‒xCox-ZIF | Zn1‒xCox-ZIF@Zn1‒xCoxO | in situ transformation | RhB | •OH/•O2- | [ |
MIL-68 (In) | AgCl/Ag/In2O3 | annealing | tetracycline/Cr (VI) | •O2-/e-/ h+ | [ |
Ti-Fe-MOF | TiO2/Au/Fe2O3 | hydrothermal + annealing | 2,4 dichlorophenol and 4-bromophenol | •OH/•O2- | [ |
MOF-5 | C-doped ZnO | annealing | RhB | •O2-/h+ | [ |
MIL-53-NH2 | g-C3N4 @CoFe2O4/Fe2O3 | annealing | tetracycline | •OH | [ |
MIL-125/Co | C-TiO2/CoTiO3 | annealing | ciprofloxacin | •OH | [ |
MIL-100(Fe) | CdS QDs/Fe2O3 | two-step calcination | bisphenol A | •OH/h+ | [ |
MIL-125 | g-C3N4/TiO2 | annealing | RhB | •O2-/h+ | [ |
Cu-Zn-BTC | Ag2O/ZnO/CuO | annealing | acid blue 92 | •OH | [ |
MIL-68(In) | MoS2/In2S3 | two-step hydrothermal | MO | •OH/•O2- | [ |
MIL-101(Fe) | Fe2O3/TiO2 | microwave-assisted sol-gel | NSAIDs | h+ | [ |
NH2-MIL-125(Ti) | N-doped TiO2 | annealing | MB | e- | [ |
CAU-17 | Bi2O2CO3/g-C3N4 | wet chemistry and calcination | tetracycline | •O2- | [ |
UiO-66 | TiO2/ZrO2 | annealing | RhB | •OH/•O2- | [ |
In-BDC | In2O3 | annealing | perfluorooctanoic acid | •OH | [ |
MIL-68(In) | MWCNT@In2S3 | thiourea sulfuration | tetracycline | •O2-/h+ | [ |
Fe-MIL-88B | α-Fe2O3/C | annealing | MB | •OH/•O2- | [ |
Cd-MOF | CdS/NC-T | annealing | tetracycline | •OH/•O2-/h+ | [ |
HKUST-1 | GCNOX/Cu2O@C | annealing | RhB ciprofloxacin | •OH | [ |
MIL-88A | ZnIn2S4@Fe3O4 ZnIn2S4@α-Fe2O3 | annealing + in-situ self-assembly strategy | RhB, MO, MB and BPA | •O2-/h+ •OH/•O2- | [ |
CuBTC/SA | Fe3O4-CuO@carbon | ferrocene CVD and pyrolysis | MB, acid red 73, X-3B, BPA | •OH/e-/h+ | [ |
Ag/Bi-MOF | Ag/AgCl/BiOCl | halogenation treatment | tetracycline | •O2-/h+ | [ |
Bi-BTC | BiOBr/Bi24O31Br10 | Bromination-annealing route | RhB | h+/•O2-/1O2 | [ |
Bi-BTC | BiOX, X= Cl, Br, I | solvothermal method in sealed autoclaves | RhB | •O2-/h+ | [ |
Prussian blue | CuFe2O4 | annealing | RhB | •OH | [ |
MOF-5 | C-doped ZnO | annealing | RhB | •O2-/h+ | [ |
Zn-MOF | ZnO/C | annealing | MB | — | [ |
MOF-5 | ZnO/C | one-step carbonization | MB | •OH/•O2- | [ |
ZIF-8 | C-doped ZnO | two-step calcination | RhB | — | [ |
MIL-68-In | In2S3 | sulfidation | MO and tetracycline | •O2-/h+ | [ |
[NH3CH3][Cu(HCOO)3] | Cu2O | direct one-step pyrolysis | MO | •O2-/h+ | [ |
Co/In-MOFs | In2O3/Co3O4-palygorskite | one-pot solvothermal method | MB and TC | •O2-/h+/•OH | [ |
Table 4 A summary of MOF-derived photocatalysts for photocatalytic degradation of pollutants.
MOF precursor | Photocatalysts | Synthesis strategy | Pollutant | Reactive species | Ref. |
---|---|---|---|---|---|
MIL-88B | AgPt@γ-Fe2O3/CuO | annealing | 4-nitrophenol | •OH/•O2- | [ |
MOF-NiZn | ZnO/Ni0.9Zn0.1O | annealing | MB | •OH | [ |
MIL-125(Ti) | CeOx@C-TiO2 | annealing | tetracycline | •OH/•O2- | [ |
Co/Fe-MOF | CoP/Fe2P@mC | annealing (NaH2PO2) | RhB | h+/•OH/•O2- | [ |
ZIF-8@MIL-68(In) | ZnO@In2O3 | one-step calcination | tetracycline | •OH/•O2- | [ |
Cu-BTC | Cu-doped TiO2 | ultrasonic-assisted precipitation technique | ofloxacin | •OH/•O2- | [ |
In-MIL-68 | In2O3@SnIn4S8 | oil-bath method | Cr (VI) | e- | [ |
Zn/Co-ZIF | ZnO@C-N-Co | directly pyrolyzing | MO | •OH/•O2- | [ |
Zn1‒xCox-ZIF | Zn1‒xCox-ZIF@Zn1‒xCoxO | in situ transformation | RhB | •OH/•O2- | [ |
MIL-68 (In) | AgCl/Ag/In2O3 | annealing | tetracycline/Cr (VI) | •O2-/e-/ h+ | [ |
Ti-Fe-MOF | TiO2/Au/Fe2O3 | hydrothermal + annealing | 2,4 dichlorophenol and 4-bromophenol | •OH/•O2- | [ |
MOF-5 | C-doped ZnO | annealing | RhB | •O2-/h+ | [ |
MIL-53-NH2 | g-C3N4 @CoFe2O4/Fe2O3 | annealing | tetracycline | •OH | [ |
MIL-125/Co | C-TiO2/CoTiO3 | annealing | ciprofloxacin | •OH | [ |
MIL-100(Fe) | CdS QDs/Fe2O3 | two-step calcination | bisphenol A | •OH/h+ | [ |
MIL-125 | g-C3N4/TiO2 | annealing | RhB | •O2-/h+ | [ |
Cu-Zn-BTC | Ag2O/ZnO/CuO | annealing | acid blue 92 | •OH | [ |
MIL-68(In) | MoS2/In2S3 | two-step hydrothermal | MO | •OH/•O2- | [ |
MIL-101(Fe) | Fe2O3/TiO2 | microwave-assisted sol-gel | NSAIDs | h+ | [ |
NH2-MIL-125(Ti) | N-doped TiO2 | annealing | MB | e- | [ |
CAU-17 | Bi2O2CO3/g-C3N4 | wet chemistry and calcination | tetracycline | •O2- | [ |
UiO-66 | TiO2/ZrO2 | annealing | RhB | •OH/•O2- | [ |
In-BDC | In2O3 | annealing | perfluorooctanoic acid | •OH | [ |
MIL-68(In) | MWCNT@In2S3 | thiourea sulfuration | tetracycline | •O2-/h+ | [ |
Fe-MIL-88B | α-Fe2O3/C | annealing | MB | •OH/•O2- | [ |
Cd-MOF | CdS/NC-T | annealing | tetracycline | •OH/•O2-/h+ | [ |
HKUST-1 | GCNOX/Cu2O@C | annealing | RhB ciprofloxacin | •OH | [ |
MIL-88A | ZnIn2S4@Fe3O4 ZnIn2S4@α-Fe2O3 | annealing + in-situ self-assembly strategy | RhB, MO, MB and BPA | •O2-/h+ •OH/•O2- | [ |
CuBTC/SA | Fe3O4-CuO@carbon | ferrocene CVD and pyrolysis | MB, acid red 73, X-3B, BPA | •OH/e-/h+ | [ |
Ag/Bi-MOF | Ag/AgCl/BiOCl | halogenation treatment | tetracycline | •O2-/h+ | [ |
Bi-BTC | BiOBr/Bi24O31Br10 | Bromination-annealing route | RhB | h+/•O2-/1O2 | [ |
Bi-BTC | BiOX, X= Cl, Br, I | solvothermal method in sealed autoclaves | RhB | •O2-/h+ | [ |
Prussian blue | CuFe2O4 | annealing | RhB | •OH | [ |
MOF-5 | C-doped ZnO | annealing | RhB | •O2-/h+ | [ |
Zn-MOF | ZnO/C | annealing | MB | — | [ |
MOF-5 | ZnO/C | one-step carbonization | MB | •OH/•O2- | [ |
ZIF-8 | C-doped ZnO | two-step calcination | RhB | — | [ |
MIL-68-In | In2S3 | sulfidation | MO and tetracycline | •O2-/h+ | [ |
[NH3CH3][Cu(HCOO)3] | Cu2O | direct one-step pyrolysis | MO | •O2-/h+ | [ |
Co/In-MOFs | In2O3/Co3O4-palygorskite | one-pot solvothermal method | MB and TC | •O2-/h+/•OH | [ |
Fig. 24. (a) The fabrication process of the hollow porous carbon (HPC)-immobilized ultrahigh content of single Zn atoms. Reprinted with permission from Ref. [266]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Schematic preparation process of the Fe-N/GNs. Reprinted with permission from Ref. [267]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 25. (a) Schematic preparation process of Co-NxPS/C/CdS photocatalyst; (b) Aberration-corrected STEM images of Co-NxPS/C cocatalyst; (c) H2 amounts of series photocatalysts; (d) Photocatalytic mechanism for H2 evolution. Reprinted with permission from Ref. [280]. Copyright 2021, Elsevier.
Fig. 26. (a) Schematic fabrication process of CoSx/g-C3N4 photocatalysts; Schematic illustration of the morphology of ZIF-67 (b) and hollow CoSx polyhedron (c); FESEM images of ZIF-67 (d), hollow CoSx polyhedron (e) and CoSx/g-C3N4 composites (f). Reprinted with permission from Ref. [286]. Copyright 2018, American Chemical Society.
Fig. 27. (a) The synthesis processes of CoP/g-C3N4. Reprinted with permission from Ref. [287]. Copyright 2018, The Royal Society of Chemistry. (b) Synthesis of Ni2P/CdS composite. Reprinted with permission from Ref. [288]. Copyright 2016, American Chemical Society.
Fig. 28. (a) The illustration for the synthesis procedure of the Ni/SiO2 catalysts. Reprinted with permission from Ref. [285]. Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Schematic process for the preparation of Ni/g-C3N4. Reprinted with permission from Ref. [289]. Copyright 2019, The Royal Society of Chemistry.
Fig. 29. (a) PL spectra of pure g-C3N4 and CoSx/g-C3N4; (b) Linear sweep voltammograms of g-C3N4/FTO, CoSx/FTO, and CoSx/g-C3N4/FTO electrodes; (c) Photocatalytic H2 evolution rate of g-C3N4 and CoSx/g-C3N4 photocatalysts with different CoSx contents; (d) Schematic mechanism for photocatalytic H2 evolution over CoSx/g-C3N4 photocatalyst. Reprinted with permission from Ref. [286]. Copyright 2018, American Chemical Society.
Fig. 30. (a) EIS of CdS and Ni2P/CdS; (b) Photocatalytic H2 generation rate of different photocatalysts. (a,b) Reprinted with permission from Ref. [288]. Copyright 2016, American Chemical Society. (c) Steady-state PL spectra of g-C3N4 and Ni/g-C3N4 with different Ni loadings; (d) Photocatalytic activity of H2 evolution over Ni/CN with different Ni loadings. (c,d) Reprinted with permission from Ref. [289]. Copyright 2019, The Royal Society of Chemistry. (e) The HER polarization curves of various catalysts; (f) PL spectra for g-C3N4, Pt/g-C3N4, and 1 wt% C-ZIF/g-C3N4 composite under 375 nm excitation. (e,f) Reprinted with permission from Ref. [301]. Copyright 2019, The Royal Society of Chemistry.
Fig. 31. (a) TRPL spectra of EY sensitized g-C3N4, CN/FeP/g-C3N4 and CN/FeNi7.47P/g-C3N4 composites; (b) Possible mechanism of photocatalytic H2 evolution over the EY-sensitized CN/FeNiP/g-C3N4 composite. (a,b) Reprinted with permission from Ref. [303]. Copyright 2019, Elsevier. (c) EIS for g-C3N4, g-C3N4/C@Ni2P, and g-C3N4/C@Ni3S4/Ni2P with different phosphating times; (d) Schematic preparation process of the g-C3N4/C@Ni3S4/Ni2P composite; (e) The proposed mechanism of photocatalytic H2 evolution over EY-sensitized g-C3N4/C@Ni3S4/Ni2P composite. (c?e) Reprinted with permission from Ref. [304]. Copyright 2019, Elsevier. (f) Photocurrent responses of g-C3N4, MoO2-8%/g-C3N4 and MoNi@MoO2-8%/g-C3N4; (g) Schematic process of charge transfer and H2 production over MoNi@MoO2/g-C3N4 composite. (f,g) Reprinted with permission from Ref. [305]. Copyright 2020, Elsevier.
Fig. 32. (a) Schematic synthesis process of the NixCo1?xO@C/CdS nanocomposites; (b) Schematic process of photogenerated carries separation and transfer in the NixCo1?xO@C/CdS system; (c) Photocatalytic activity of H2 evolution over CdS, Pt/CdS and NixCo1?xO@C/CdS. (a?c) Reprinted with permission from Ref. [307]. Copyright 2020, Elsevier. (d) Schematic preparation process of CoP/Co@NPC/g-C3N4 photocatalysts; (e) Schematic process of charge transfer and H2 production; (f) H2 generation over Co@NC/g-C3N4 and CoP/Co@NPC/g-C3N4 with different phosphidation time [308]. (d?f) Reprinted with permission from Ref. [308]. Copyright 2020, American Chemical Society.
Fig. 33. Schematic preparation process of ZIF-8-derived ZnO and ZIF-8@ZIF-67-derived ZnO@Co3O4 polyhedron. Reprinted with permission from Ref. [310]. Copyright 2016, The Royal Society of Chemistry.
Fig. 34. TEM images of ZnO photocatalyst derived from ZIF-8 before (a) and after (b) photocatalytic CO2 reduction; TEM images of ZnO@Co3O4 photocatalyst derived from ZIF-8@ZIF-67 before (c) and after (d) photocatalytic CO2 reduction; (e) Schematic diagram of ZnO and ZnO@Co3O4 participating in photocatalytic CO2 reduction; (f) CO and (g) CH4 evolution by various photocatalysts. Reprinted with permission from Ref. [310]. Copyright 2016, The Royal Society of Chemistry.
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[3] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[6] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[7] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[8] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[9] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[10] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[11] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[12] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[13] | Huizhen Li, Yanlei Chen, Qing Niu, Xiaofeng Wang, Zheyuan Liu, Jinhong Bi, Yan Yu, Liuyi Li. The crystalline linear polyimide with oriented photogenerated electron delivery powering CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 49(6): 152-159. |
[14] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
[15] | Jiao Wang, Fangfang Zhu, Biyi Chen, Shuang Deng, Bochen Hu, Hong Liu, Meng Wu, Jinhui Hao, Longhua Li, Weidong Shi. B atom dopant-manipulate electronic structure of CuIn nanoalloy delivering wide potential activity over electrochemical CO2RR [J]. Chinese Journal of Catalysis, 2023, 49(6): 132-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||