Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (7): 1945-1954.DOI: 10.1016/S1872-2067(21)64043-3
• Articles • Previous Articles Next Articles
Wenhao Cuia,b,†, Dali Zhua,b,†, Juan Tanc, Nan Chena,b, Dong Fana, Juan Wanga, Jingfeng Hana, Linying Wanga,*(), Peng Tiana,#(), Zhongmin Liua
Received:
2021-12-06
Accepted:
2022-03-02
Online:
2022-07-18
Published:
2022-05-20
Contact:
Linying Wang, Peng Tian
About author:
First author contact:†Contributed equally to this work.
Supported by:
Wenhao Cui, Dali Zhu, Juan Tan, Nan Chen, Dong Fan, Juan Wang, Jingfeng Han, Linying Wang, Peng Tian, Zhongmin Liu. Synthesis of mesoporous high-silica zeolite Y and their catalytic cracking performance[J]. Chinese Journal of Catalysis, 2022, 43(7): 1945-1954.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64043-3
Sample | Starting gel a | Product | Surface area c (m2/g) | Pore volume c (cm3/g) | Relative crystallinity % e | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | Time (day) | Phase | SAR b | SBET | Smicro | Sexter | Vmicro | Vmeso | |||||
SY9.5 | 20 | 0 | 3.5 | FAU | 9.5 (10.0) [9.8] | 644 | 585 | 59 | 0.27 | 0.06 | 100 | |||
1 | 20 | 0.005 | 3.5 | FAU | 9.8 | 692 | 567 | 125 | 0.26 | 0.13 | 94.9 | |||
2 | 20 | 0.01 | 3.8 | FAU | 10.2 | 702 | 524 | 178 | 0.27 | 0.16 | 85.1 | |||
3 (MSY10.7) | 20 | 0.015 | 4.5 | FAU | 10.7 (9.4) [10.7] | 779 | 568 | 211 | 0.26 | 0.22 | 84.8 | |||
4 | 20 | 0.02 | 5.2 | FAU+β (trace) | 11.3 | 770 | 570 | 200 | 0.27 | 0.18 | 128.3 | |||
5 | 30 | 0.01 | 5.4 | FAU | 12.6 | 770 | 587 | 183 | 0.27 | 0.17 | 125.1 | |||
6d | 40 | 0.01 | 8.0 | FAU+β+ MOR | 17.5 | — | — | — | — | — | — | |||
USY | — | — | — | FAU | 12.9 (8.1) [17.2] | 632 | 537 | 95 | 0.25 | 0.14 | 98.8 | |||
NaY5.6 | — | — | — | FAU | 5.6 | 540 | 504 | 36 | 0.24 | 0.03 | 68.1 |
Table 1 Synthesis conditions, product phases, compositions and textural properties of the high-silica zeolite Y samples.
Sample | Starting gel a | Product | Surface area c (m2/g) | Pore volume c (cm3/g) | Relative crystallinity % e | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | Time (day) | Phase | SAR b | SBET | Smicro | Sexter | Vmicro | Vmeso | |||||
SY9.5 | 20 | 0 | 3.5 | FAU | 9.5 (10.0) [9.8] | 644 | 585 | 59 | 0.27 | 0.06 | 100 | |||
1 | 20 | 0.005 | 3.5 | FAU | 9.8 | 692 | 567 | 125 | 0.26 | 0.13 | 94.9 | |||
2 | 20 | 0.01 | 3.8 | FAU | 10.2 | 702 | 524 | 178 | 0.27 | 0.16 | 85.1 | |||
3 (MSY10.7) | 20 | 0.015 | 4.5 | FAU | 10.7 (9.4) [10.7] | 779 | 568 | 211 | 0.26 | 0.22 | 84.8 | |||
4 | 20 | 0.02 | 5.2 | FAU+β (trace) | 11.3 | 770 | 570 | 200 | 0.27 | 0.18 | 128.3 | |||
5 | 30 | 0.01 | 5.4 | FAU | 12.6 | 770 | 587 | 183 | 0.27 | 0.17 | 125.1 | |||
6d | 40 | 0.01 | 8.0 | FAU+β+ MOR | 17.5 | — | — | — | — | — | — | |||
USY | — | — | — | FAU | 12.9 (8.1) [17.2] | 632 | 537 | 95 | 0.25 | 0.14 | 98.8 | |||
NaY5.6 | — | — | — | FAU | 5.6 | 540 | 504 | 36 | 0.24 | 0.03 | 68.1 |
Fig. 1. (a) XRD patterns of the as-synthesized MSY10.7 and SY9.5. (b) SEM images of MSY10.7. (c,d) High-magnification SEM images to show the surface of MSY10.7 crystals.
Fig. 3. TEM images and SAED pattern of the mesoporous high-silica zeolite Y (sample MSY10.7). (a,c) Low magnification images. (b) SAED pattern taken from selected circle region in (a). (d) High-resolution image corresponds to the rectangle region in (c).
Fig. 5. Thermal and hydrothermal stability of the samples. TG (a) and DSC (b) curves of the as-synthesized high-silica zeolite Y. (c) The micropore volume retention of H-form samples after hydrothermal treatment. The micropore volume of each fresh sample is defined as 100%.
Fig. 6. Acidity of the H-form high-silica zeolite Y. (a) NH3-TPD profiles. (b,c) FTIR spectra of pyridine ring-related vibration regions on the H-form samples after pyridine desorption at 150 and 300 °C.
Sample | SAR b | BAS (mmol/g) | LAS (mmol/g) | BAS+LAS (mmol/g) | BAS/LAS |
---|---|---|---|---|---|
H-SY9.5 | 11.9 | 0.90 | 0.26 | 1.16 | 3.53 |
H-MSY10.7 | 13.6 | 0.70 | 0.26 | 0.97 | 2.71 |
H-USY | 20.9 | 0.30 | 0.11 | 0.41 | 2.88 |
Table 2 Framework SAR of the H-form samples and the amounts of Brønsted and Lewis acid sites determined by FT-IR spectra of pyridine adsorption at 150 °C a.
Sample | SAR b | BAS (mmol/g) | LAS (mmol/g) | BAS+LAS (mmol/g) | BAS/LAS |
---|---|---|---|---|---|
H-SY9.5 | 11.9 | 0.90 | 0.26 | 1.16 | 3.53 |
H-MSY10.7 | 13.6 | 0.70 | 0.26 | 0.97 | 2.71 |
H-USY | 20.9 | 0.30 | 0.11 | 0.41 | 2.88 |
Fig. 7. Catalytic cracking performance of the H-form high-silica zeolite Y. (a) N-octane cracking versus time on stream. Reaction conditions: T = 460 °C, WHSVn-octane = 3.88 h-1. (b) TIPB cracking versus time on stream. Reaction conditions: T = 200 °C, WHSVTIPB = 3.08 h-1.
Items (wt%) | MSY10.7-based catalyst | Industrial FCC catalyst |
---|---|---|
Conversion | 93.11 | 85.47 |
Dry gas | 1.02 | 1.23 |
Gasoline | 61.46 | 45.09 |
Diesel | 13.07 | 14.14 |
Gasoline + Diesel | 74.53 | 59.23 |
Diesel/Gasoline ratio | 0.21 | 0.31 |
Liquid petroleum gas (LPG) | 12.13 | 20.41 |
LPG+Gasoline+Diesel | 86.66 | 79.64 |
Heavy oil | 6.89 | 14.53 |
Coke | 5.42 | 4.59 |
Table 3 Heavy oil cracking on MSY10.7-based catalyst and industrial FCC catalyst.
Items (wt%) | MSY10.7-based catalyst | Industrial FCC catalyst |
---|---|---|
Conversion | 93.11 | 85.47 |
Dry gas | 1.02 | 1.23 |
Gasoline | 61.46 | 45.09 |
Diesel | 13.07 | 14.14 |
Gasoline + Diesel | 74.53 | 59.23 |
Diesel/Gasoline ratio | 0.21 | 0.31 |
Liquid petroleum gas (LPG) | 12.13 | 20.41 |
LPG+Gasoline+Diesel | 86.66 | 79.64 |
Heavy oil | 6.89 | 14.53 |
Coke | 5.42 | 4.59 |
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Jing Shi, Yu-Hua Guo, Fei Xie, Ming-Tian Zhang, Hong-Tao Zhang. Electronic effects of redox-active ligands on ruthenium-catalyzed water oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 271-279. |
[3] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[4] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[5] | Wen Zhang, Cai-Cai Song, Jia-Wei Wang, Shu-Ting Cai, Meng-Yu Gao, You-Xiang Feng, Tong-Bu Lu. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with alcohol oxidation in aqueous solution [J]. Chinese Journal of Catalysis, 2023, 52(9): 176-186. |
[6] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[7] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[8] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[9] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[10] | He-Yang Zhou, Hai-Tao Tang, Wei-Min He. The future of organic electrochemistry current transfer [J]. Chinese Journal of Catalysis, 2023, 46(3): 4-10. |
[11] | Feng Sha, Shan Tang, Chizhou Tang, Zhendong Feng, Jijie Wang, Can Li. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2023, 45(2): 162-173. |
[12] | Kehan Zhu, Haifeng Jiang, Gao-Feng Chen, Hao Wu, Liang-Xin Ding, Haihui Wang. Simultaneous electrosynthesis of nitrate and hydrogen by integrating ammonia oxidation and water reduction [J]. Chinese Journal of Catalysis, 2023, 55(12): 216-226. |
[13] | Xianbiao Fu. Some thoughts about the electrochemical nitrate reduction reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 8-12. |
[14] | Yuehui Li, Duanhui Si, Wangyin Wang, Song Xue, Wenzhe Shang, Zhanyou Chi, Can Li, Ce Hao, Govindjee Govindjee, Yantao Shi. Light-driven CO2 assimilation by photosystem II and its relation to photosynthesis [J]. Chinese Journal of Catalysis, 2023, 44(1): 117-126. |
[15] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||