Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (11): 2850-2857.DOI: 10.1016/S1872-2067(22)64098-1
• Articles • Previous Articles Next Articles
Behnaz Rahmani Didara, Axel Großa,b,*()
Received:
2021-12-26
Accepted:
2022-04-04
Online:
2022-11-18
Published:
2022-10-20
Contact:
Axel Groß
Behnaz Rahmani Didar, Axel Groß. Solvation structure and dynamics of Li and LiO2 and their transformation in non-aqueous organic electrolyte solvents from first-principles simulations[J]. Chinese Journal of Catalysis, 2022, 43(11): 2850-2857.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64098-1
Electrolyte | PBE | PBE-D3 | RPBE | RPBE-D3 |
---|---|---|---|---|
Li | ||||
ACN (Li-N) | ‒0.50 | ‒0.52 | ‒0.47 | ‒0.49 |
DMSO (Li-O) | ‒0.76 | ‒0.79 | ‒0.67 | ‒0.72 |
DME (Li-O) | ‒0.82 | ‒0.83 | ‒0.70 | ‒0.80 |
LiO2 | ||||
ACN (Li-N) | ‒0.84 | ‒0.88 | ‒0.81 | ‒0.86 |
DMSO (Li-O) | ‒0.98 | ‒1.01 | ‒0.94 | ‒1.00 |
DME (Li-O) | ‒1.05 | ‒1.06 | ‒0.95 | ‒1.14 |
Table 1 Interaction energies (in eV) of Li and LiO2 with electrolyte molecules obtained from DFT calculations using Eq. (1).
Electrolyte | PBE | PBE-D3 | RPBE | RPBE-D3 |
---|---|---|---|---|
Li | ||||
ACN (Li-N) | ‒0.50 | ‒0.52 | ‒0.47 | ‒0.49 |
DMSO (Li-O) | ‒0.76 | ‒0.79 | ‒0.67 | ‒0.72 |
DME (Li-O) | ‒0.82 | ‒0.83 | ‒0.70 | ‒0.80 |
LiO2 | ||||
ACN (Li-N) | ‒0.84 | ‒0.88 | ‒0.81 | ‒0.86 |
DMSO (Li-O) | ‒0.98 | ‒1.01 | ‒0.94 | ‒1.00 |
DME (Li-O) | ‒1.05 | ‒1.06 | ‒0.95 | ‒1.14 |
Electrolyte | PBE | PBE-D3 | RPBE | RPBE-D3 |
---|---|---|---|---|
Li | ||||
ACN (Li-N) | 1.94 | 1.94 | 1.99 | 2.00 |
DMSO (Li-O) | 1.80 | 1.80 | 1.85 | 1.82 |
DME (Li-O) | 1.98 | 1.99 | 2.00 | 2.04 |
LiO2 | ||||
ACN (Li-N) | 2.07 | 2.04 | 2.16 | 2.05 |
Li-O | 1.82 | 1.81 | 1.83 | 1.83 |
O-O | 1.36 | 1.37 | 1.37 | 1.37 |
(DMSO) Li-O | 1.88 | 1.90 | 1.92 | 1.91 |
Li-O | 1.81 | 1.82 | 1.83 | 1.83 |
O-O | 1.37 | 1.37 | 1.37 | 1.37 |
(DME) Li-O | 2.06 | 2.16 | 2.12 | 2.09 |
Li-O | 1.83 | 1.83 | 1.84 | 1.83 |
O-O | 1.37 | 1.37 | 1.37 | 1.38 |
Table 2 Bond lengths in Å for the interactions of Li and LiO2 with electrolyte molecules obtained from DFT calculations. As far as the Li?O distances with respect to the complexes of LiO2 with DMSO and DME are concerned, the first line presents the Li distance to the oxygen atoms of the solvent molecules and the second line the Li?O distance within LiO2. The O?O distance always refers to the LiO2 compound.
Electrolyte | PBE | PBE-D3 | RPBE | RPBE-D3 |
---|---|---|---|---|
Li | ||||
ACN (Li-N) | 1.94 | 1.94 | 1.99 | 2.00 |
DMSO (Li-O) | 1.80 | 1.80 | 1.85 | 1.82 |
DME (Li-O) | 1.98 | 1.99 | 2.00 | 2.04 |
LiO2 | ||||
ACN (Li-N) | 2.07 | 2.04 | 2.16 | 2.05 |
Li-O | 1.82 | 1.81 | 1.83 | 1.83 |
O-O | 1.36 | 1.37 | 1.37 | 1.37 |
(DMSO) Li-O | 1.88 | 1.90 | 1.92 | 1.91 |
Li-O | 1.81 | 1.82 | 1.83 | 1.83 |
O-O | 1.37 | 1.37 | 1.37 | 1.37 |
(DME) Li-O | 2.06 | 2.16 | 2.12 | 2.09 |
Li-O | 1.83 | 1.83 | 1.84 | 1.83 |
O-O | 1.37 | 1.37 | 1.37 | 1.38 |
Fig. 1. Charge density difference ∆ρ upon the interaction of Li with ACN (a), DMSO (b) and DME (c) molecules, and LiO2 with ACN (d), DMSO (e) and DME (f) molecules, as obtained from DFT calculations using Eq. (2). Cyan and yellow regions correspond to electron accumulation and depletion, respectively. The isosurface levels are ±0.005 eV Å-3.
Fig. 2. Radial distribution functions of the Li?O and Li?N distances, respectively, obtained from AIMD simulations of Li (a) and LiO2 (b) in 1 mol/L ACN, DMSO and DME electrolytes. Insets show the first solvation shells for each case.
Fig. 5. Reaction energy barriers obtained from the Blue Moon method of AIMD simulations for (Association) Li + O2- → LiO2) (a) and (Disproportionation) 2(LiO2) → Li2O2 + O2 (b) in vacuum and 1 mol/L of each of ACN, DMSO and DME electrolytes.
|
[1] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[2] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[3] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[4] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[5] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[6] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[7] | Guangying Zhang, Xu Liu, Xinxin Zhang, Zhijian Liang, Gengyu Xing, Bin Cai, Di Shen, Lei Wang, Honggang Fu. Phosphate-decorated Fe-N-C to promote electrocatalytic oxygen reaction activities for highly stable zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 49(6): 141-151. |
[8] | Run Jiang, Zelong Qiao, Haoxiang Xu, Dapeng Cao. Defect engineering of Fe-N-C single-atom catalysts for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 48(5): 224-234. |
[9] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[10] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[11] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[12] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[13] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[14] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[15] | Chengcheng Chen, Fangting Liu, Qiaoyu Zhang, Zhengguo Zhang, Qiong Liu, Xiaoming Fang. Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 46(3): 91-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||