• Article • Previous Articles Next Articles
Kong Yana, Jiang Xingxingb, Li Xuana, Sun Jianjub, Hu Qib, Chai Xiaoyanb, Yang Hengpanb,*, He Chuanxinb,#
Received:
2022-08-14
Accepted:
2022-09-01
Contact:
* Tel: +86-755-86969589; E-mail: hpyang@szu.edu.cn;# Tel: +86-755-26534173; E-mail: hecx@szu.edu.cn
Supported by:
Kong Yan, Jiang Xingxing, Li Xuan, Sun Jianju, Hu Qi, Chai Xiaoyan, Yang Hengpan, He Chuanxin. Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity[J]. Chinese Journal of Catalysis.
[1] S. Bushuyev, P. D. Luna, C. T. Dinh, L. Tao, G. Saur, J. V. Lagemaat, S. O. Kelley, E. H. Sargent, Joule, 2018, 2, 825-832. [2] J. F. Xie, Y. B. W,Acc. Chem. Res., 2019, 52, 1721-1729. [3] Z. Cheng, X. D. Wang, H. P. Yang, X. Y. Yu, Q. Lin, Q. Hu, C. X. He, J. Energy Chem., 2021, 54, 1-6. [4] C. T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. G.Arquer, A. Kiani, J. P. Edwards, P. D. Luna, O. S. Bushuyev, C. Q. Zou, R. Quintero-Bermudez, Y. J. Pang, D. Sinton, E. H. Sargent, Science, 2018, 360, 783-787. [5] M. C. O.Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, Núria López, M. T. M. Koper, Nat. Catal., 2021, 4, 654-662. [6] C. C. Yan, L. Lin, G. X. Wang, X. H. Bao, Chin. [J]. Catal., 2019, 40, 23-37. [7] G. D. Li, Y. J. Qin, Y. Wu, L. Pei, Q. Hu, H. P. Yang, Q. L. Zhang, J. H. Liu, C. X. He, Chin. [J]. Catal., 2020, 41, 830-838. [8] S. M. Wei, X. X. Jiang, C. Y. He, S. Y. Wang, Q. Hu, X. Y. Chai, X. Z. Ren, H. P. Yang, C. X. He, J. Mater. Chem. A, 2022, 10, 6187-6192. [9] M. G. Kibria, J. P. Edwards, C. M. Gabardo, C. T. Dinh, A. Seifitokaldani, D. Sinton, E. H. Sargent,Adv. Mater., 2019, 31, 1807166. [10] J. Q. Shao, Y. Wang, D. F. Gao, K. Ye, Q. Wang, G. X. Wang, Chin, [J]. Catal., 2020, 41, 1393-1400. [11] Z. T. Wang, Y. S. Zhou, D. Y. Liu, R. J. Qi, C. F. Xia, M. T. Li, B. You, B. Y. Xia,Angew. Chem. Int. Ed., 2022, 61, e202200552. [12] L. P. Chi, Z. Z. Niu, X. L. Zhang, P. P. Yang, J. Liao, F. Y. Gao, Z. Z. Wu, K. B. Tang, M. R. Gao,Nat. Commun., 2021, 12, 5835. [13] J. S. Zou, C. Y. Lee, G. G. Wallace,Adv. Sci., 2021, 8, 2004521. [14] L. Fan, Z. Xia, M. J. Xu, Y. Y. Lu, Z. J. Li,Adv. Funct. Mater., 2018, 28, 1706289. [15] S. Yan, C. Peng, C. Yang, Y. S. Chen, J. B. Zhang, A. X. Guan, X. M. Lv, H. Z. Wang, Z. Q. Wang, T. K. Sham, Q. Han, G. F. Zheng,Angew. Chem. Int. Ed., 2021, 60, 25741-25745. [16] S. Q. Liu, M. R. Gao, R. F. Feng, L. Gong, H. B. Zeng, J. L. Luo,ACS Catal., 2021, 11, 7604-7612. [17] Y. Qiao, W. C. Lai, K. Huang, T. T. Yu, Q. Y. Wang, L. Gao, Z. L. Yang, Z. S. Ma, T. L. Sun, M. Liu, C. Lian, H. W. Huang,ACS Catal., 2022, 12, 2357-2364. [18] N. Han, Y. Wang, H. Yang, J. Deng, J. H. Wu, Y. F. Li, Y. G. Li,Nat. Commun., 2018, 9, 1320. [19] S. B. Shen, J. He, X. Y. Peng, W. Xi, L. H. Zhang, D. S. Xi, L. Wang, X. J. Liu, J. Luo, J. Mater. Chem. A, 2018, 6, 18960-18966. [20] J. Z. Huang, X. R. Guo, X. J. Huang, L. S. Wang, Electrochim. Acta, 2019, 325, 134923. [21] G. Yang, Z. P. Yu, J. Zhang, Z. X. Liang, Chin, [J]. Catal., 2018, 39, 914-919. [22] Y. M. Shi, Y. Ji, J. Long, Y. Liang, Y. Liu, Y. F. Yu, J. P. Xiao, B. Zhang,Nat. Commun., 2020, 11, 3415. [23] P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H.Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X. M. Hu, K. Daasbjerg, T. Skrydstrup, N. Lock, Adv. Funct. Mater., 2020, 30, 1910408. [24] S. Komatsu, T. Yanagihara, Y. Hiraga, M. Tanaka, A. Kunugi, Denki Kagaku, 1995, 63, 217-224. [25] S. Q. Liu, E. Shahini, M. R. Gao, L. Gong, P. F. Sui, T. Tang, H. B. Zeng, J. L. Luo, ACS Nano, 2021, 15, 17757-17768. [26] H. Yang, N. Han, J. Deng, J. H. Wu, Y. Wang, Y. P. Hu, P. Ding, Y. F. Li, Y. G. Li, J. Lu,Adv. Energy Mater., 2018, 8, 1801536. [27] J. Fan, X. Zhao, X. N. Mao, J. Xu, N. Han, H. Yang, B. B. Pan, Y. S. Li, L. Wang, Y. G. Li,Adv. Mater., 2021, 33, 2100910. [28] Z. Y. Wang, C. Wang, Y. D. Hu, S. Yang, J. Yang, W. X. Chen, H. Zhou, F. Y. Zhou, L. X. Wang, J. Y. Du, Y. F. Li, Y. E. Wu,Nano Res., 2021, 14, 2790-2796. [29] D. H. Zhuo, Q. S. Chen, X. H. Zhao, Y. L. Jiang, J. Lu, Z. N. Xu, G. C. Guo, J. Mater. Chem. C, 2021, 9, 7900-7904. [30] J. Y. Zhu, Y. P. Li, X. J. Wang, J. Zhao, Y. S. Wu, F. T. Li,ACS Sustainable Chem. Eng., 2019, 7, 14953-14961. [31] Y. Zhang, F. W. Li, X. L. Zhang, T. Williams, C. D. Easton, A. M. Bond, J. Zhang, J. Mater. Chem. A, 2018, 6, 4714-4720. [32] Q. F. Gong, P. Ding, M. Q. Xu, X. R. Zhu, M. Y. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Z. X. Feng, Y. F. Li, W. Zhou, Y. G. Li,Nat. Commun., 2019, 10, 2807. [33] R. C. P, P. F. Tian, H. L. Jiang, M. H. Zhu, X. Z. Su, Y. Wang, X. L. Yang, Y. H. Zhu, L. Song, C. Z. Li, Natl. Sci. Rev., 2021, 8, nwaa187. [34] Y. X. Duan, K. H. Liu, Q. Zhang, J. M. Yan, Q. Jiang, Small Methods, 2020, 4, 1900846. [35] H. Ju, G. Kaur, A. P. Kulkarni, S. Giddey, J. CO2 Util., 2019, 32, 178-186. [36] B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar, C. Janáky,Prog. Energy Combust. Sci., 2017, 62, 133-154. [37] P. F. Sui, C. Y. Xu, M. N. Zhu, S. B. Liu, Q. X. Liu, J. L. Luo, Small, 2021, 18, 2105682. [38] P Yin, S. L. Hu, K. Qian, Z. Y. Wei, L. L. Zhang, Y. Lin, W. X. Huang, H. F. Xiong, W. X. Li, H. W. Liang,Nat. Commun., 2021, 12, 4865. [39] L. F. Xie, X. Y. Yu, S. Y. Wang, S. M. Wei, Q. Hu, X. Y. Chai, X. Z. Ren, H. P. Yang, C. X. He, Small, 2022, 18, 2104958. [40] S. B. Liu, X. F. Lu, J. Xiao, X. Wang, X. W. Lou,Angew. Chem. Int. Ed., 2019, 58, 13828-13833. [41] Y. C. Hao, Y. Guo, L. W. Chen, M. Shu, X. Y. Wang, T. A. Bu, W. Y. Gao, N. Zhang, X. Su, X. Feng, J. W. Zhou, B. Wang, C. W. Hu, A. X. Yin, R. Si, Y. W. Zhang, C. H. Yan,Nat. Catal., 2019, 2, 448-456. [42] M. Choi, S. Bong, J. W. Kim, J. Lee,ACS Energy Lett., 2021, 6, 2090-2095. [43] W. C. Ma, S. J. Xie, X. G. Zhang, F. F. Sun, J. C. Kang, Z. Jiang, Q. H. Zhang, D. Y. Wu, Y. Wang,Nat. Commun., 2019, 10, 892. [44] K. Zhou, S. Wang, X. Y. Guo, G. X. Zhong, Z. B. Liu, Y. M. Ma, H. Y. Wang, Y. Bao, D. X. Han, L. Niu, Small, 2022, 18, 2105770. [45] Y. Q. Jin, H. C. Yuan, J. L. Lan, Y. H. Yu, Y. H. Lin, X. P. Yang, Nanoscale, 2017, 9, 13298-13304. [46] R. C. Cui, H. Y. Zhou, J. C. Li, C. C. Yang, Q. Jiang,Adv. Funct. Mater., 2021, 31, 2103067. [47] Y. C. Wan, H. J. Zhou, M. Y. Zheng, Z. H. Huang, F. Y. Kang, J. Li, R. T. Lv,Adv. Funct. Mater., 2021, 31, 2100300. [48] M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna, X. Lu,Adv. Energy Mater., 2019, 9, 1803185. [49] D. L. T.Nguyen, M. S. Jee, D. H. Won, H. Jung, H. S. Oh, B. K. Min, Y. J. Hwang, ACS Sustainable Chem. Eng., 2017, 5, 11377-11386. [50] D. H. Won, H. Shin, J. Koh, J. Chung, H. S. Lee, H. Kim, S. I. Woo,Angew. Chem. Int. Ed., 2016, 55, 9297-9300. [51] F. J. Quan, D. Zhong, H. C. Song, F. L. Jia, L. Z. Zhang, J. Mater. Chem. A, 2015, 3, 16409-16413. [52] T. McCrum, S. A. Akhade, M. J. Janik, Electrochim. Acta, 2015, 173, 302-309. [53] X. Zhang, T. Lei, Y. Y. Liu, J. L. Qiao, Appl. Catal. B, 2017, 218, 46-50. [54] D. H. Won, C. H. Choi, J. Chung, M. W. Chung, E. H. Kim, S. I. Woo, ChemSusChem, 2015, 8, 3092-3098. [55] J. H. Koh, D. H. Won, T. Eom, N. K. Kim, K. D. Jung, H. Kim, Y. J. Hwang, B. K. Min,ACS Catal., 2017, 7, 5071-5077. [56] G. B. Wen, D. U. Lee, B. H. Ren, F. M. Hassan, G. P. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Y. Bai, L. Yang, Z. W. Chen,Adv. Energy Mater., 2018, 8, 1802427. [57] C. S. Cao, D. D. Ma, J. F. Gu, X. Y. Xie, G. Zeng, X. F. Li, S. G. Han, Q. L. Zhu, X. T. Wu, Q. Xu,Angew. Chem. Int. Ed., 2020, 59, 15014-15020. [58] Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan, Q. Jiang,Angew. Chem. Int. Ed., 2021, 60, 8798-8802. [59] F. P. G.Arquer, O. S. Bushuyev, P. D. Luna, C. T. Dinh, A. Seifitokaldani, M. I. Saidaminov, C. S. Tan, L. N. Quan, A. Proppe, M. G. Kibria, S. O. Kelley, D. Sinton, E. H. Sargent, Adv. Mater., 2018, 30, 1802858. [60] J. Yang, X. L. Wang, Y. T. Qu, X. Wang, H. Huo, Q. K. Fan, J. Wang, L. M. Yang, Y. E. Wu,Adv. Energy Mater., 2020, 10, 2001709. [61] X. B. Fu, J. A. Wang, X. B. Hu, K. He, Q. Tu, Q. Yue, Y. J. Kang,Adv. Funct. Mater., 2022, 32, 2107182. [62] D. Z. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao, S. Z. Qiao,Angew. Chem. Int. Ed., 2021, 60, 18178-18184. [63] S. Chang, Y. M. Xuan, J. J. Duan, K. Zhang, Appl. Catal. B, 2022, 306, 121135. [64] J. J. Tian, R. Y. Wang, M. Shen, X. Ma, H. L. Yao, Z. L. Hua, L. X. Zhang, ChemSusChem, 2021, 14, 2247-2254. [65] J. H. Zhu, J. Fan, T. L. Cheng, M. Y. Cao, Z. H. Sun, R. Zhou, L. Huang, D. Wang, Y. G. Li, Y. P. Wu, Nano Energy, 2020, 75, 104939. [66] Y. Zhao, X. L. Liu, Z. X. Liu, X. Lin, J. Lan, Y. L. Zhang, Y. R. Lu, M. Peng, T. S. Chan, Y. W. Tan,Nano Lett., 2021, 21, 6907-6913. [67] B. H. Ren, G. B. Wen, R. Gao, D. Luo, Z. Zhang, W. B. Qiu, Q. Y. Ma, X. Wang, Y. Cui, L. Ricardez-Sandoval, A. P. Yu, Z. W. Chen,Nat. Commun., 2022, 13, 2486. [68] Z. Z. Niu, F. Y. Gao, X. L. Zhang, P. P. Yang, R. Liu, L. P. Chi, Z. Z. Wu, S. Qin, X. X. Yu, M. R. Gao, J. Am. Chem.Soc., 2021, 143, 8011-8021. [69] Z. W. H.Pan, K. Wang, K. H. Ye, Y. Wang, H. Y. Su, B. H. Hu, J. Xiao, T. W. Yu, Y. Wang, S. Q. Song, ACS. Catal., 2020, 10, 3871-3880. [70] S. J. Mu, H. L. Lu, Q. B. Wu, L. Li, R. J. Zhao, C. Long, C. H. Cui,Nat. Commun., 2022, 13, 3694. [71] F. C. Lei, W. Liu, Y. F. Sun, J. Q. Xu, K. T. Liu, L. Liang, T. Yao, B. C. Pan, S. Q. Wei, Y. Xie,Nat. Commun., 2016, 7, 12697. [72] L. P. Yuan, W. J. Jiang, X. L. Liu, Y. H. He, C. He, T. Tang, J. N. Zhang, J. S. Hu,ACS Catal., 2020, 10, 13227-13235. |
[1] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[2] | Shuaiqi Meng, Zhongyu Li, Peng Zhang, Francisca Contreras, Yu Ji, Ulrich Schwaneberg. Deep learning guided enzyme engineering of Thermobifida fusca cutinase for increased PET depolymerization [J]. Chinese Journal of Catalysis, 2023, 50(7): 229-238. |
[3] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[4] | Huanhuan Yang, Shiying Li, Qun Xu. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 32-65. |
[5] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[6] | Yan Kong, Xingxing Jiang, Xuan Li, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity [J]. Chinese Journal of Catalysis, 2023, 45(2): 95-106. |
[7] | Yan Yang, Jia-ju Fu, Tang Tang, Shuai Niu, Li-Bing Zhang, Jia-nan Zhang, Jin-Song Hu. Regulating surface In-O in In@InOx core-shell nanoparticles for boosting electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2022, 43(7): 1674-1679. |
[8] | Ernest Pahuyo Delmo, Yian Wang, Jing Wang, Shangqian Zhu, Tiehuai Li, Xueping Qin, Yibo Tian, Qinglan Zhao, Juhee Jang, Yinuo Wang, Meng Gu, Lili Zhang, Minhua Shao. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1687-1696. |
[9] | Linfeng Xie, Xuan Liu, Fanyang Huang, Jiashun Liang, Jianyun Liu, Tanyuan Wang, Liming Yang, Ruiguo Cao, Qing Li. Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets [J]. Chinese Journal of Catalysis, 2022, 43(7): 1680-1686. |
[10] | Lu Wang, Chaorong Qi, Wenfang Xiong, Huanfeng Jiang. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies [J]. Chinese Journal of Catalysis, 2022, 43(7): 1598-1617. |
[11] | Shu-Mei Xia, Zhi-Wen Yang, Kai-Hong Chen, Ning Wang, Liang-Nian He. Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1642-1651. |
[12] | Zhenyu Li, Liyuan Huai, Panpan Hao, Xi Zhao, Yongzhao Wang, Bingsen Zhang, Chunlin Chen, Jian Zhang. Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts [J]. Chinese Journal of Catalysis, 2022, 43(3): 793-801. |
[13] | Sunhong Ruan, Biao Zhang, Jinhan Zou, Wanfu Zhong, Xiaoyang He, Jinhai Lu, Qinghong Zhang, Ye Wang, Shunji Xie. Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures [J]. Chinese Journal of Catalysis, 2022, 43(12): 3161-3169. |
[14] | Hong Li, Kun Jiang, Shou-Zhong Zou, Wen-Bin Cai. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies [J]. Chinese Journal of Catalysis, 2022, 43(11): 2772-2791. |
[15] | Jianfang Liu, Zhenzhen Ran, Qiyan Cao, Shengfu Ji. Preparation of MIL-88B(Fex,Co1‒x) catalysts and their application in one-step liquid-phase methanol oxidation to methyl formate using H2O2 [J]. Chinese Journal of Catalysis, 2021, 42(12): 2254-2264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||