Chinese Journal of Catalysis ›› 2023, Vol. 46: 167-176.DOI: 10.1016/S1872-2067(22)64201-3
• Articles • Previous Articles Next Articles
Han Lia, Shanren Taoa, Sijie Wana, Guogen Qiua, Qing Longa, Jiaguo Yua,b, Shaowen Caoa,*()
Received:
2022-10-11
Accepted:
2022-11-27
Online:
2023-03-18
Published:
2023-02-21
Contact:
*E-mail: swcao@whut.edu.cn (S. Cao)
Supported by:
Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production[J]. Chinese Journal of Catalysis, 2023, 46: 167-176.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64201-3
Fig. 1. (a) Schematic diagram of the fabrication route for ZCS@DBTCN composites. (b) XRD patterns of pristine ZCS, DBTCN and ZCS@DBTCN composites. (c) FT-IR spectra of DBTCN, ZCS, and ZCS@DBTCN composites.
Fig. 4. (a) PL spectra of DBTCN, ZCS, and ZCS@DBTCN. (b) TRPL of DBTCN, ZCS and 7ZCS@DBTCN. EIS plots (c) and photocurrent responses (d) of DBTCN, ZCS and 7ZCS@DBTCN.
Fig. 5. (a) PHE rates of DBTCN, ZCS and ZCS@DBTCN samples. (b) Stability test of PHE over 7ZCS@DBTCN. (c) XRD patterns of 7ZCS@DBTCN before and after reaction. (d) FESEM image of 7ZCS@DBTCN after reaction.
Fig. 7. (a) XPS survey spectra of ZCS, DBTCN and 7ZCS@DBTCN. High-resolution Zn 2p (b), Cd 3d (c) and C 1s (d) XPS spectra of the samples. In-situ XPS spectra were recorded under light irradiation (λ = 365 nm), where 7ZCS@DBTCN and 7ZCS@DBTCN UV represent under dark and light conditions, respectively.
Fig. 8. AFM image of 7ZCS@DBTCN (a), and corresponding surface potential images of 7ZCS@DBTCN under dark (b) and light-irradiation (c) conditions; The height (d) and surface potential (e) of the line scan from point A to point B. (f) Charge density distribution at the interface of ZCS@DBTCN heterostructure; (g) The planar averaged electron density difference of ZCS@DBTCN. The yellow and cyan areas denote the electron accumulation and loss, respectively.
|
[1] | Yanyan Zhao, Shumin Zhang, Zhen Wu, Bicheng Zhu, Guotai Sun, Jianjun Zhang. Regulation of d-band center of TiO2 through fluoride doping for enhancing photocatalytic H2O2 production activity [J]. Chinese Journal of Catalysis, 2024, 60(5): 219-230. |
[2] | Aiyun Meng, Xinyuan Ma, Da Wen, Wei Zhong, Shuang Zhou, Yaorong Su. Towards highly-selective H2O2 photosynthesis: In-plane highly ordered carbon nitride nanorods with Ba atoms implantation [J]. Chinese Journal of Catalysis, 2024, 60(5): 231-241. |
[3] | Wenjian Fang, Jiawei Yan, Zhidong Wei, Junying Liu, Weiqi Guo, Zhi Jiang, Wenfeng Shangguan. Account of doping photocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 1-24. |
[4] | Chenyu Du, Jianping Sheng, Fengyi Zhong, Ye He, Vitaliy P. Guro, Yanjuan Sun, Fan Dong. Rational design and mechanistic insights of advanced photocatalysts for CO2-to-C2+ production: Status and challenges [J]. Chinese Journal of Catalysis, 2024, 60(5): 25-41. |
[5] | Haoming Huang, Qingqing Lin, Qing Niu, Jiangqi Ning, Liuyi Li, Jinhong Bi, Yan Yu. Metal-free photocatalytic reduction of CO2 on a covalent organic framework-based heterostructure [J]. Chinese Journal of Catalysis, 2024, 60(5): 201-208. |
[6] | Heng Zhou, Rui Zhang, Caiyan Yue, Xu Wu, Qiong Yan, Hao Wang, Heng Zhang, Tianyi Ma. Enhanced charge transfer over sustainable biochar decorated Bi2WO6 composite photocatalyst for highly efficient water decontamination [J]. Chinese Journal of Catalysis, 2024, 59(4): 169-184. |
[7] | Miaoli Gu, Yi Yang, Bei Cheng, Liuyang Zhang, Peng Xiao, Tao Chen. Unveiling product selectivity in S-scheme heterojunctions: Harnessing charge separation for tailored photocatalytic oxidation [J]. Chinese Journal of Catalysis, 2024, 59(4): 185-194. |
[8] | Linghui Meng, Chen Zhao, Hongyu Chu, Yu-Hang Li, Huifen Fu, Peng Wang, Chong-Chen Wang, Hongwei Huang. Synergetic piezo-photocatalysis of g-C3N4/PCN-224 core-shell heterojunctions for ultrahigh H2O2 generation [J]. Chinese Journal of Catalysis, 2024, 59(4): 346-359. |
[9] | Baolong Zhang, Fangxuan Liu, Bin Sun, Tingting Gao, Guowei Zhou. Hierarchical S-scheme heterojunctions of ZnIn2S4-decorated TiO2 for enhancing photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 334-345. |
[10] | Entian Cui, Yulian Lu, Jizhou Jiang, Arramel , Dingsheng Wang, Tianyou Zhai. Tailoring CuNi heteronuclear diatomic catalysts: Precision in structural design for exceptionally selective CO2 photoreduction to ethanol [J]. Chinese Journal of Catalysis, 2024, 59(4): 126-136. |
[11] | Tingting Yang, Bin Wang, Paul K. Chu, Jiexiang Xia, Huaming Li. Self-sacrificing MOF-derived hierarchical porous In2S3 nanostructures with enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2024, 59(4): 204-213. |
[12] | Bing Zeng, Fengwei Huang, Yuexin Wang, Kanghui Xiong, Xianjun Lang. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 226-236. |
[13] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[14] | Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 157-167. |
[15] | Yuting Liu, Beili Nie, Ning Li, Huifang Liu, Feng Wang. Chlorine radical-mediated photocatalytic C(sp3)-H bond oxidation of aryl ethers to esters [J]. Chinese Journal of Catalysis, 2024, 58(3): 123-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||