Chinese Journal of Catalysis ›› 2023, Vol. 46: 125-136.DOI: 10.1016/S1872-2067(22)64184-6
• Articles • Previous Articles Next Articles
Chenggong Yanga,b, Donge Wanga,*(), Rong Huanga,b, Jianqiang Hana, Na Tac, Huaijun Maa, Wei Qua, Zhendong Pana, Congxin Wanga, Zhijian Tiana,c,*()
Received:
2022-09-06
Accepted:
2022-10-13
Online:
2023-03-18
Published:
2023-02-21
Contact:
*E-mail: tianz@dicp.ac.cn (Z. Tian), dewang@dicp.ac.cn (D. Wang)
Supported by:
Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation[J]. Chinese Journal of Catalysis, 2023, 46: 125-136.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(22)64184-6
Catalyst | ATM (g) | N2H4·H2O (g) | TBT (g) | H2O (mL) | Ethyl alcohol (mL) |
---|---|---|---|---|---|
TiO2 | 0 | 0.63 | 7.7 | 60 | 40 |
MoS2-TiO2-5 | 0.26 | 0.32 | 13.0 | 60 | 40 |
MoS2-TiO2-15 | 0.52 | 0.63 | 7.7 | 60 | 40 |
MoS2-TiO2-25 | 0.52 | 0.63 | 4.1 | 60 | 40 |
MoS2-TiO2-35 | 0.52 | 0.63 | 2.5 | 60 | 40 |
MoS2 | 0.52 | 0.63 | 0 | 60 | 40 |
Table 1 Synthesis of TiO2, MoS2, and MoS2-TiO2 nanocomposite catalysts under different conditions.
Catalyst | ATM (g) | N2H4·H2O (g) | TBT (g) | H2O (mL) | Ethyl alcohol (mL) |
---|---|---|---|---|---|
TiO2 | 0 | 0.63 | 7.7 | 60 | 40 |
MoS2-TiO2-5 | 0.26 | 0.32 | 13.0 | 60 | 40 |
MoS2-TiO2-15 | 0.52 | 0.63 | 7.7 | 60 | 40 |
MoS2-TiO2-25 | 0.52 | 0.63 | 4.1 | 60 | 40 |
MoS2-TiO2-35 | 0.52 | 0.63 | 2.5 | 60 | 40 |
MoS2 | 0.52 | 0.63 | 0 | 60 | 40 |
Fig. 2. HRTEM images of bare TiO2 (a), MoS2-TiO2-5 (b), MoS2-TiO2-15(c), MoS2-TiO2-25 (d), MoS2-TiO2-35 (e), MoS2/TiO2-15-I (f) and MoS2 samples (g). (h) HRTEM image and corresponding element mapping of MoS2-TiO2-15 sample.
Fig. 5. XPS spectra of Mo 3d (a), Ti 2p (b) for MoS2 and MoS2-TiO2 nanocomposite samples. (c) XPS spectra of Mo 3d for MoS2, supported MoS2/TiO2-15-I and MoS2-TiO2-15 nanocomposite samples. (d) Negative shifts of binding energy for Mo 3d of MoS2-TiO2 nanocomposite samples compared with that of MoS2 sample.
Fig. 7. (a) Conversions and HPs of phenanthrene over MoS2 catalyst and MoS2-TiO2 nanocomposite catalysts with different MoS2 contents. (b) Catalytic hydrogenation selectivities to PHx over MoS2 catalyst and MoS2-TiO2 nanocomposite catalysts with different MoS2 contents. (c) Conversions and HPs of phenanthrene over bare TiO2, MoS2, the mixture of bare TiO2 and MoS2, MoS2-TiO2-15-I and MoS2-TiO2-15 catalyst. (d) Catalytic hydrogenation selectivities to PHx over bare TiO2, synthesized MoS2, the mixture of bare TiO2 and MoS2, MoS2-TiO2-15-I and MoS2-TiO2-15 catalyst. Reaction conditions: MoS2 contents of catalyst 0.075 g, phenanthrene 3.0 g, solvent tridecane 30.0 g, initial pressure 8 Mpa, 350 °C, 4 h.
Fig. 9. (a) The XRD patterns of fresh MoS2, MoS2-C7, fresh MoS2-TiO2-15, and MoS2-TiO2-15-C7. (b) HRTEM images of fresh MoS2, MoS2-C7, fresh MoS2-TiO2-15, and MoS2-TiO2-15-C7. (c) XPS spectra of Mo 3d of fresh MoS2, MoS2-C7, fresh MoS2-TiO2-15, and MoS2-TiO2-15-C7.
|
[1] | Ling Zhou, Yingying Li, Yuxuan Lu, Shuangyin Wang, Yuqin Zou. pH-Induced selective electrocatalytic hydrogenation of furfural on Cu electrodes [J]. Chinese Journal of Catalysis, 2022, 43(12): 3142-3153. |
[2] | Wenbiao Zhang, Yanghao Shi, Yang Yang, Jingwen Tan, Qingsheng Gao. Facet dependence of electrocatalytic furfural hydrogenation on palladium nanocrystals [J]. Chinese Journal of Catalysis, 2022, 43(12): 3116-3125. |
[3] | DING Weiping. The Recent Progress and the Future Trend of the Fundamental and Applied Study on Catalytic Hydrogenation [J]. Chinese Journal of Catalysis, 2019, 40(s1): 209-216. |
[4] | Zhengchao Duan, Lianzhi Wang, Xiaoyu Zuo, Xiangping Hu, Zhuo Zheng. Rh-ImiFerroPhos complexes catalyzed asymmetric hydrogenation of β-substituted α,β-unsaturated phosphonates [J]. Chinese Journal of Catalysis, 2014, 35(2): 227-231. |
[5] | Qinsheng Zhang, Haifeng Li, Ping Gao, Lailai Wang. PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives [J]. Chinese Journal of Catalysis, 2014, 35(11): 1793-1799. |
[6] | LI Da-Dong. Crucial technologies supporting future development of petroleum refining industry [J]. Chinese Journal of Catalysis, 2013, 34(1): 48-60. |
[7] | DING Weiping*, GUO Xuefeng, MO Min, ZHU Yan, CHEN Yi. Progress of the Study on the Synthesis and Catalytic Property of Noncrystalline Alloy Nanotubes [J]. Chinese Journal of Catalysis, 2010, 31(8): 887-894. |
[8] | HE Haifeng;GONG Shuwen*;LIU Lijun;CUI Qingxin;YIN Handong. Hydrogenation of Aromatic Ketones to Aromatic Hydrocarbons over SiO2-Supported Chitosan Schiff-Base Palladium Catalyst [J]. Chinese Journal of Catalysis, 2010, 31(7): 846-850. |
[9] | ZHENG Liangke;XU Chenghua*;LIANG Wenbiao;LIU Jianying;LIU Jun;DUN Xingjie;GUO Yan;YANG Yingchun. Furfural Hydrogenation over Cu-Containing Catalysts Obtained from Hydro-talcite-Type Precursors [J]. Chinese Journal of Catalysis, 2010, 31(4): 461-465. |
[10] | WANG Haitang;ZHU Yinhua;YANG Zhuhong;LIU Jinlong;SUN Qingjie;LU Xiaohua*;FENG Xin. p-Nitrophenol Hydrogenation over a Novel Ni/TiO2 Catalyst [J]. Chinese Journal of Catalysis, 2009, 30(5): 414-420. |
[11] | ZHANG Meng;DENG Jia;ZHANG Minghui;LI Wei*. Shape-Controlled Synthesis of Nickel Wires Using an External Magnetic Field [J]. Chinese Journal of Catalysis, 2009, 30(5): 447-452. |
[12] | WANG Zhiqiang;ZHANG Minghui*;LI Wei;TAO Keyi. Synthesis of Ni-Mo2N/SiO2 Nanocomposite Catalyst and Its Catalytic Activity for Tetralin Hydrogenation [J]. Chinese Journal of Catalysis, 2008, 29(3): 292-296. |
[13] | REN Fei;LI Qiuxiao*. Preparation of Ultrafine Ni-Cu-Co-La Catalysts for Hydrogenation of Acetonitrile [J]. Chinese Journal of Catalysis, 2007, 28(9): 829-834. |
[14] | REN Shibiao;QIU Jinheng;WANG Chunyan;XU Bolian;FAN Yining*;CHEN Yi. Influence of Nickel Salt Precursors on the Hydrogenation Activity of Ni/γ-Al2O3Catalyst [J]. Chinese Journal of Catalysis, 2007, 28(7): 651-656. |
[15] | YIN Hongwei;CHEN Jixiang*;ZHANG Jiyan. Effects of Calcination and Reduction Temperature on Catalytic Performance of Ni/TiO2 Catalyst for Hydrogenation of p-Nitrophenol to p-Animophenol [J]. Chinese Journal of Catalysis, 2007, 28(5): 435-440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||