Chinese Journal of Catalysis ›› 2023, Vol. 48: 214-223.DOI: 10.1016/S1872-2067(23)64398-0
• Articles • Previous Articles Next Articles
Xing-Wei Gua,1, Youcan Zhangb,1, Fengqian Zhaoa, Han-Jun Aia, Xiao-Feng Wua,b,*()
Received:
2022-12-21
Accepted:
2022-01-23
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: About author:
First author contact:1Contributed equally to this work.
Supported by:
Xing-Wei Gu, Youcan Zhang, Fengqian Zhao, Han-Jun Ai, Xiao-Feng Wu. Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex[J]. Chinese Journal of Catalysis, 2023, 48: 214-223.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64398-0
Entry | Variation from the “Standard conditions” | Yield (%)b |
---|---|---|
1 | none | >96 (95) |
2 | 10 mol% PCy3 | 91 |
3 | 0.2 mol L-1 dioxane | 95 |
4c | nBu3P instead of PCy3 | 90 |
5c | PPh3 instead of PCy3 | n.d. |
6c | (p-FC6H4)3P instead of PCy3 | n.d. |
7c | Na2CO3 instead of K2CO3 | 46 |
8c | Cs2CO3 instead of K2CO3 | 9 |
9c | Et3N instead of K2CO3 | 24 |
10c | 18 h instead of 24 h | 85 |
11 | 50 °C instead of 80 °C | 68 |
12 | No PCy3 | n.d. |
13 | No light | n.d. |
Table 1 Optimization of the reaction conditions.a
Entry | Variation from the “Standard conditions” | Yield (%)b |
---|---|---|
1 | none | >96 (95) |
2 | 10 mol% PCy3 | 91 |
3 | 0.2 mol L-1 dioxane | 95 |
4c | nBu3P instead of PCy3 | 90 |
5c | PPh3 instead of PCy3 | n.d. |
6c | (p-FC6H4)3P instead of PCy3 | n.d. |
7c | Na2CO3 instead of K2CO3 | 46 |
8c | Cs2CO3 instead of K2CO3 | 9 |
9c | Et3N instead of K2CO3 | 24 |
10c | 18 h instead of 24 h | 85 |
11 | 50 °C instead of 80 °C | 68 |
12 | No PCy3 | n.d. |
13 | No light | n.d. |
Scheme 2. Scope of phenols. a Reaction conditions: phenols (0.2 mmol), alkyl iodide (0.3 mmol), K2CO3 (0.3 mmol), PCy3 (20 mol%), 1,4-dioxane (0.5 mL), CO (1 bar), irradiation with blue light (400-500 nm) at 80 °C for 24 h. b PCy3 (50 mol%). c phenols (0.2 mmol), alkyl iodide (0.6 mmol), K2CO3 (0.6 mmol), PCy3 (40 mol%), 1,4-dioxane (1 mL). dThe reaction was performed on a 5 mmol scale (1.27 g).
Scheme 3. Scope of Alkyl iodides. a Reaction conditions: phenols (0.2 mmol), alkyl iodides (0.3 mmol), K2CO3 (0.3 mmol), PCy3 (20 mol%), 1,4-dioxane (0.5 mL), CO (1 bar), irradiation with blue light (400-500 nm) at 80 °C for 24 h. b PCy3 (50 mol%). c (p-FC6H4)3P (30 mol%), 1,4-dioxane (2 mL). dThe reaction was performed on a 0.1 mmol scale. e The reaction was performed under 1 atm of 13CO pressure.
Entry | Variations from the standard conditions | Yield b (%) |
---|---|---|
1 | none | 56 (53) c |
2 | X-Phos or PCy3 instead of PPh3 | 43, 38 |
3 d | DPPP or Xantphos instead of PPh3 | 50, 56 |
4 | adding 3 eq. K3PO4 | 51 |
5 e | K2CO3 instead of K3PO4 | 50 |
6 e | Na3PO4 instead of K3PO4 | 43 |
7 e | DIPEA instead of K3PO4 | trace |
8 | adding 50 uL H2O | 56 |
9 | adding 10 mol% PPh3 | 48 |
10 | without PPh3 | 31 |
11 | without K3PO4 | n.d. |
12 | no light | n.d. |
Table 2 Optimization of reaction conditions a.
Entry | Variations from the standard conditions | Yield b (%) |
---|---|---|
1 | none | 56 (53) c |
2 | X-Phos or PCy3 instead of PPh3 | 43, 38 |
3 d | DPPP or Xantphos instead of PPh3 | 50, 56 |
4 | adding 3 eq. K3PO4 | 51 |
5 e | K2CO3 instead of K3PO4 | 50 |
6 e | Na3PO4 instead of K3PO4 | 43 |
7 e | DIPEA instead of K3PO4 | trace |
8 | adding 50 uL H2O | 56 |
9 | adding 10 mol% PPh3 | 48 |
10 | without PPh3 | 31 |
11 | without K3PO4 | n.d. |
12 | no light | n.d. |
Scheme 5 Substrate scope of alkenes and perfluoroalkyl iodides a-c. a Reaction conditions: alkene (0.2 mmol), alkyl iodide (0.3 mmol), PPh3 (20 mol %), K3PO4 (10 mol %), and H2O (0.1 mL) in 1,4-dioxane (1 mL) at rt for 24 h under CO (40 bar), isolated yield. b ethylene (2 bar), alkyl iodide (0.3 mmol), the isolated yield is calculated based on the perfluorobutyl iodide used. c pentafluoroiodoethane (0.6 mmol).
|
[1] | Fulin Zhang, Xia Li, Xiaoyun Dong, Huimin Hao, Xianjun Lang. Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2 [J]. Chinese Journal of Catalysis, 2022, 43(9): 2395-2404. |
[2] | Zhenlong Zhao, Ji Bian, Lina Zhao, Hongjun Wu, Shuai Xu, Lei Sun, Zhijun Li, Ziqing Zhang, Liqiang Jing. Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1331-1340. |
[3] | Muhammad Tayyab, Yujie Liu, Shixiong Min, Rana Muhammad Irfan, Qiaohong Zhu, Liang Zhou, Juying Lei, Jinlong Zhang. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires [J]. Chinese Journal of Catalysis, 2022, 43(4): 1165-1175. |
[4] | Shaonan Zhang, Shi Cao, Yu-Mei Lin, Liyuan Sha, Cheng Lu, Lei Gong. Photocatalyzed site-selective C(sp3)‒H sulfonylation of toluene derivatives and cycloalkanes with inorganic sulfinates [J]. Chinese Journal of Catalysis, 2022, 43(3): 564-570. |
[5] | Jiaqi Wang, Hao Cheng, Dingqiong Wei, Zhaohui Li. Ultrasonic-assisted fabrication of Cs2AgBiBr6/Bi2WO6 S-scheme heterojunction for photocatalytic CO2 reduction under visible light [J]. Chinese Journal of Catalysis, 2022, 43(10): 2606-2614. |
[6] | Kaipeng Cao, Dong Fan, Shu Zeng, Benhan Fan, Nan Chen, Mingbin Gao, Dali Zhu, Linying Wang, Peng Tian, Zhongmin Liu. Organic-free synthesis of MOR nanoassemblies with excellent DME carbonylation performance [J]. Chinese Journal of Catalysis, 2021, 42(9): 1468-1477. |
[7] | Zhou Ren, Yang Liu, Yuan Lyu, Xiangen Song, Changyong Zheng, Zheng Jiang, Yunjie Ding. Quaternary phosphonium polymer-supported dual-ionically bound [Rh(CO)I3]2- catalyst for heterogeneous ethanol carbonylation [J]. Chinese Journal of Catalysis, 2021, 42(4): 606-617. |
[8] | Feiyue Ge, Shuquan Huang, Jia Yan, Liquan Jing, Feng Chen, Meng Xie, Yuanguo Xu, Hui Xu, Huaming Li. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity [J]. Chinese Journal of Catalysis, 2021, 42(3): 450-459. |
[9] | Huimin Liu, Xianguang Meng, Weiwei Yang, Guixia Zhao, Dehua He, Jinhua Ye. Photo-thermal CO2 reduction with methane on group VIII metals: In situ reduced WO3 support for enhanced catalytic activity [J]. Chinese Journal of Catalysis, 2021, 42(11): 1976-1982. |
[10] | Weifeng Chu, Xiaona Liu, Zhiqiang Yang, Hiroya Nakata, Xingzhi Tan, Xuebin Liu, Longya Xu, Peng Guo, Xiujie Li, Xiangxue Zhu. Constrained Al sites in FER-type zeolites [J]. Chinese Journal of Catalysis, 2021, 42(11): 2078-2087. |
[11] | Chen Zhao, Zhihua Wang, Xi Chen, Hongyu Chu, Huifen Fu, Chong-Chen Wang. Robust photocatalytic benzene degradation using mesoporous disk-like N-TiO2 derived from MIL-125(Ti) [J]. Chinese Journal of Catalysis, 2020, 41(8): 1186-1197. |
[12] | Shunji Xie, Haikun Zhang, Guodong Liu, Xuejiao Wu, Jinchi Lin, Qinghong Zhang, Ye Wang. Tunable localized surface plasmon resonances in MoO3-x-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light [J]. Chinese Journal of Catalysis, 2020, 41(7): 1125-1131. |
[13] | Li Yang, Lijun Shi, Chungu Xia, Fuwei Li. Intermediate formation enabled regioselective access to amide in the Pd-catalyzed reductive aminocarbonylation of olefin with nitroarene [J]. Chinese Journal of Catalysis, 2020, 41(7): 1152-1160. |
[14] | Jinghua An, Yehong Wang, Zhixin Zhang, Jian Zhang, Martin Gocyla, Rafal E. Dunin-Borkowski, Feng Wang. Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(6): 963-969. |
[15] | Ning Li, Hang Gao, Xin Wang, Sujun Zhao, Da Lv, Guoqing Yang, Xueyun Gao, Haikuan Fan, Yangqin Gao, Lei Ge. Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance [J]. Chinese Journal of Catalysis, 2020, 41(3): 426-434. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||