Chinese Journal of Catalysis ›› 2023, Vol. 48: 117-126.DOI: 10.1016/S1872-2067(23)64412-2
• Articles • Previous Articles Next Articles
Jingjing Lia,1, Fengwei Zhanga,*,1(), Xinyu Zhanb,1, Hefang Guoa, Han Zhanga, Wen-Yan Zana,*(
), Zhenyu Sunb,*(
), Xian-Ming Zhanga,c,*(
)
Received:
2022-10-31
Accepted:
2023-02-01
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: About author:
1Contributed equally to this work.
Supported by:
Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2023, 48: 117-126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64412-2
Fig. 1. TEM (a), HRTEM (b), HAADF-STEM (c) images, and EDS maps (d) of NiPc(α-NO2)4/CNTs. Ni K-edge XANES spectra (e) and Fourier transformed EXAFS spectra (f) of NiPc(α-NO2)4/CNTs, NiPc(α-NH2)4/CNTs, NiPc/CNTs, standard NiO, and Ni foil.
Fig. 3. (a) Linear sweep voltammetry curves of NiPc(α-NO2)4/CNTs and reference catalysts. (b) FECO at different potentials on various catalysts. (c) Product selectivity comparison at ?1.0 V vs. RHE. (d) CO partial current density at various potentials. (e) Electrochemical impedance spectroscopy (EIS) curves with corresponding fitting profiles for NiPc-based MDEs. (f) TOF values of CO2 to CO over various NiPc-based MDEs at different potentials.
Fig. 4. (a) The reaction pathway and free energy diagrams of CO2RR to CO over NiPc-based MDEs. (b) The difference in CO2RR and HER limiting potentials. (c?e) Various DFT optimized intermediates along the CO2RR pathway by NiPc(α-NO2)4/CNTs.
|
[1] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[2] | Xuan Li, Xingxing Jiang, Yan Kong, Jianju Sun, Qi Hu, Xiaoyan Chai, Hengpan Yang, Chuanxin He. Interface engineering of a GaN/In2O3 heterostructure for highly efficient electrocatalytic CO2 reduction to formate [J]. Chinese Journal of Catalysis, 2023, 50(7): 314-323. |
[3] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[4] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[5] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[6] | Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery [J]. Chinese Journal of Catalysis, 2023, 46(3): 36-47. |
[7] | Xiaoni Liu, Xiaobin Liu, Caixia Li, Bo Yang, Lei Wang. Defect engineering of electrocatalysts for metal-based battery [J]. Chinese Journal of Catalysis, 2023, 45(2): 27-87. |
[8] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[9] | Shenyu Shen, Qingfeng Guo, Tiantian Wu, Yaqiong Su. The dynamic behaviors of heterogeneous interfaces in electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 53(10): 52-71. |
[10] | Yuyan Qiao, Yanqiu Pan, Jiangwei Zhang, Bin Wang, Tingting Wu, Wenjun Fan, Yucheng Cao, Rashid Mehmood, Fei Zhang, Fuxiang Zhang. Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst [J]. Chinese Journal of Catalysis, 2022, 43(9): 2354-2362. |
[11] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[12] | Yu Shang, Yunxuan Ding, Peili Zhang, Mei Wang, Yufei Jia, Yunlong Xu, Yaqing Li, Ke Fan, Licheng Sun. Pyrrolic N or pyridinic N: The active center of N-doped carbon for CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(9): 2405-2413. |
[13] | Tong Cui, Xuejun Zhai, Lili Guo, Jing-Qi Chi, Yu Zhang, Jiawei Zhu, Xuemei Sun, Lei Wang. Controllable synthesis of a self-assembled ultralow Ru, Ni-doped Fe2O3 lily as a bifunctional electrocatalyst for large-current-density alkaline seawater electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2202-2211. |
[14] | Xiu Qian, Yanjiao Wei, Mengjie Sun, Ye Han, Xiaoli Zhang, Jian Tian, Minhua Shao. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2Tx MXene to improve the electrocatalytic nitrogen reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1937-1944. |
[15] | Chuhao Liu, Yue Wu, Jinjie Fang, Ke Yu, Hui Li, Wenjun He, Weng-Chon Cheong, Shoujie Liu, Zheng Chen, Jing Dong, Chen Chen. Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1697-1702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||