Chinese Journal of Catalysis ›› 2023, Vol. 48: 175-184.DOI: 10.1016/S1872-2067(23)64418-3
• Articles • Previous Articles Next Articles
Zhiyue Zhaoa,1, Zhiwei Jianga,1, Yizhe Huanga, Mebrouka Boubecheb, Valentina G. Matveevac, Hector F. Garcesd, Huixia Luob, Kai Yana,*()
Received:
2022-11-28
Accepted:
2023-02-14
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: About author:
First author contact:1Contributed equally to this work.
Supported by:
Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols[J]. Chinese Journal of Catalysis, 2023, 48: 175-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64418-3
Fig. 1. (a) Schematic of the synthesis of the AM-CoSi alloy through arc melting. (b) HR-TEM image of the AM-CoSi alloy. (c) Point defects (inset shows the image intensity line profile corresponding to the white dotted line). (d) Line defects (inset shows the image intensity line profiles corresponding to the areas enclosed in blue and red rectangles). (e) Plane defects; AC HAADF-STEM (f) and ACTEM (g) images of the AM-CoSi alloy.
Fig. 2. Structural characterization of the AM-CoSi catalyst by XAFS spectroscopy: experimental Co K-edge XANES profiles (a) and Fourier-transformed magnitude (b) of the experimental Co K-edge EXAFS signal of the AM-CoSi alloy and reference samples (Co foil, Co3O4, and S-CoSi). (c) Wavelet transform (WT) for the k3-weighted EXAFS signals of the AM-CoSi alloy. (d) Corresponding EXAFS R-space fitting curve of the AM-CoSi alloy.
Fig. 3. (a) Scheme of the selective oxidation of BAL over the AM-CoSi catalyst. Effect of time on the solvent-free aerobic oxidation of BAL over AM-CoSi at 140 °C (b) and 220 °C (c) under 5 bar O2. The effect of O2 pressure in the solvent-free aerobic oxidation of BAL over AM-CoSi at 140 °C for 6 h (d) and at 220 °C for 24 h (e). Product distributions of the oxidation of BAL over different catalysts at 140 °C for 6 h under 5 bar O2 (f) and at 220 °C for 24 h under 9 bar O2 (g). Reaction conditions: 3 mL of BAL, 10 mg of the catalyst.
Entry | Substrate | Main product | Conversion (%) | Selectivity (%) | Yield (%) |
---|---|---|---|---|---|
1 | | | 54.8 | 84.7 | 46.4 |
2 | | | 52.6 | 97.3 | 51.2 |
3 | | | 42.5 | 88.3 | 37.5 |
4 | | | 30.2 | 92.5 | 27.9 |
5 | | | 54.3 | 95.4 | 51.8 |
6 | | | 32.2 | 99.6 | 32.1 |
Table 1 Solvent-free aerobic oxidation of various alcohols over the AM-CoSi catalyst.
Entry | Substrate | Main product | Conversion (%) | Selectivity (%) | Yield (%) |
---|---|---|---|---|---|
1 | | | 54.8 | 84.7 | 46.4 |
2 | | | 52.6 | 97.3 | 51.2 |
3 | | | 42.5 | 88.3 | 37.5 |
4 | | | 30.2 | 92.5 | 27.9 |
5 | | | 54.3 | 95.4 | 51.8 |
6 | | | 32.2 | 99.6 | 32.1 |
Fig. 4. (a) Reusability of the AM-CoSi alloy catalyst for 5 cycles. XRD patterns (b) and Co 2p XPS profiles (c) of AM-CoSi before and after the reaction. (d) HR-TEM image of the spent AM-CoSi alloy catalyst (inset shows the image intensity line profiles corresponding to the white dotted line).
Fig. 6. Reaction energy profiles for the formation of BAD and BBE on the (200) crystal planes of S-CoSi (a) and CoSiv (b). Route 1: conversion of BAL to BAD; Route 2: conversion of BAL to BBE.
|
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[3] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[4] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[5] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[6] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[7] | Feng Li, Xiaolong Tang, Zhuofeng Hu, Xiangming Li, Fang Li, Yu Xie, Yanbin Jiang, Changlin Yu. Boosting the hydrogen peroxide production over In2S3 crystals under visible light illumination by gallium ions doping and sulfur vacancies modulation [J]. Chinese Journal of Catalysis, 2023, 55(12): 253-264. |
[8] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[9] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[10] | Qing Yao, Jiabo Le, Shize Yang, Jun Cheng, Qi Shao, Xiaoqing Huang. A trace of Pt can significantly boost RuO2 for acidic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1493-1501. |
[11] | Yu Deng, Jue Li, Rumeng Zhang, Chunqiu Han, Yi Chen, Ying Zhou, Wei Liu, Po Keung Wong, Liqun Ye. Solar-energy-driven photothermal catalytic C-C coupling from CO2 reduction over WO3-x [J]. Chinese Journal of Catalysis, 2022, 43(5): 1230-1237. |
[12] | Dan Zhang, Hongfu Miao, Xueke Wu, Zuochao Wang, Huan Zhao, Yue Shi, Xilei Chen, Zhenyu Xiao, Jianping Lai, Lei Wang. Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting [J]. Chinese Journal of Catalysis, 2022, 43(4): 1148-1155. |
[13] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678. |
[14] | Xuemei Jia, Zichen Shen, Qiaofeng Han, Huiping Bi. Rod-like Bi4O5I2/Bi4O5Br2 step-scheme heterostructure with oxygen vacancies synthesized by calcining the solid solution containing organic group [J]. Chinese Journal of Catalysis, 2022, 43(2): 288-302. |
[15] | Ke Wang, Shihui He, Yunzhi Lin, Xun Chen, Wenxin Dai, Xianzhi Fu. Photo-enhanced thermal catalytic CO2 methanation activity and stability over oxygen-deficient Ru/TiO2 with exposed TiO2 {001} facets: Adjusting photogenerated electron behaviors by metal-support interactions [J]. Chinese Journal of Catalysis, 2022, 43(2): 391-402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||