Chinese Journal of Catalysis ›› 2023, Vol. 48: 101-116.DOI: 10.1016/S1872-2067(23)64407-9
• Articles • Previous Articles Next Articles
Enara Fernandeza, Laura Santamariaa, Irati Garcíaa, Maider Amutioa, Maite Artetxea, Gartzen Lopeza,b,*(), Javier Bilbaoa, Martin Olazara
Received:
2022-11-22
Accepted:
2023-02-06
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: Enara Fernandez, Laura Santamaria, Irati García, Maider Amutio, Maite Artetxe, Gartzen Lopez, Javier Bilbao, Martin Olazar. Elucidating coke formation and evolution in the catalytic steam reforming of biomass pyrolysis volatiles at different fixed bed locations[J]. Chinese Journal of Catalysis, 2023, 48: 101-116.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64407-9
Technique | Information obtained |
---|---|
N2 adsorption-desorption | surface area pore volume pore diameter |
TPR | reduction temperature of metallic phases |
XRD | crystallographic structure Ni0 particle size (scherrer Eq.) |
TPO | coke content coke structure coke composition |
SEM | coke morphology coke nature coke location |
TEM | coke morphology coke nature coke location |
RAMAN | structure, composition |
FTIR | structure, composition |
Table 1 Characterization techniques and information obtained.
Technique | Information obtained |
---|---|
N2 adsorption-desorption | surface area pore volume pore diameter |
TPR | reduction temperature of metallic phases |
XRD | crystallographic structure Ni0 particle size (scherrer Eq.) |
TPO | coke content coke structure coke composition |
SEM | coke morphology coke nature coke location |
TEM | coke morphology coke nature coke location |
RAMAN | structure, composition |
FTIR | structure, composition |
Fig. 2. Evolution of the volatile conversion (a) and individual product yields (b) with time on stream. Reforming conditions: 600 °C, space time 20 gcat min gvolatiles-1, S/B ratio 4.
Axial position | TOS (min) | SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | dNi0 a (nm) | dNi0 b (nm) |
---|---|---|---|---|---|---|
A1 | 0 | 19.0 | 0.040 | 122 | 25 | 24 |
50 | 9.3 | 0.033 | 288 | 25 | 25 | |
100 | 7.4 | 0.025 | 259 | 27 | 28 | |
150 | 5.9 | 0.020 | 178 | 28 | 28 | |
A2 | 50 | 9.5 | 0.039 | 185 | 26 | 26 |
100 | 10.2 | 0.032 | 160 | 29 | 30 | |
150 | 8.9 | 0.031 | 187 | 29 | 30 | |
A3 | 50 | 10.6 | 0.042 | 199 | 26 | 27 |
100 | 11.0 | 0.039 | 174 | 32 | 33 | |
150 | 11.3 | 0.036 | 152 | 33 | 33 |
Table 2 Evolution of the textural properties and Ni crystallite size of the Ni/Al2O3 catalyst with TOS at different axial locations in the catalytic bed.
Axial position | TOS (min) | SBET (m2 g-1) | Vpore (cm3 g-1) | dpore (Å) | dNi0 a (nm) | dNi0 b (nm) |
---|---|---|---|---|---|---|
A1 | 0 | 19.0 | 0.040 | 122 | 25 | 24 |
50 | 9.3 | 0.033 | 288 | 25 | 25 | |
100 | 7.4 | 0.025 | 259 | 27 | 28 | |
150 | 5.9 | 0.020 | 178 | 28 | 28 | |
A2 | 50 | 9.5 | 0.039 | 185 | 26 | 26 |
100 | 10.2 | 0.032 | 160 | 29 | 30 | |
150 | 8.9 | 0.031 | 187 | 29 | 30 | |
A3 | 50 | 10.6 | 0.042 | 199 | 26 | 27 |
100 | 11.0 | 0.039 | 174 | 32 | 33 | |
150 | 11.3 | 0.036 | 152 | 33 | 33 |
Fig. 3. XRD patterns of the fresh reduced catalyst and those deactivated for 150 min on stream at different axial positions (A1, A2, and A3). Crystalline phases: () CaO(Al2O3)2, () Ni0, () CaAl2O4, () CaAl12O19, and () Al2O3.
Fig. 4. Evolution of TPO profiles with time on stream in the catalysts deactivated at different axial positions in the fixed bed reactor: (a) A1; (b) A2; (c) A3.
Fig. 5. Evolution with time on stream of the coke content deposited at different axial positions and average coke deposition rates in different axial positions. (a,d) A1; (b,e) A2; (c,f) A3.
Fig. 6. (a) SEM images of the fresh reduced catalyst; the catalysts deactivated at different axial positions and for different times on stream. TOS 50 min: A1 (b), A2 (c) and A3 (d); TOS 100 min: A1 (e), A2 (f) and A3 (g); TOS 150 min: A1 (h), A2 (i) and A3 (j).
Fig. 7. TEM images of the catalyst deactivated at different axial positions and different times on stream. TOS 50 min: A1 (a), A2 (b), A3 (c); TOS 100 min: A1 (d), A2 (e) and A3 (f); TOS 150 min: A1 (g), A2 (h) and A3 (i).
Fig. 8. Evolution of the Raman spectra (1000-1800 cm-1 region) of the coke deposited on the catalysts deactivated at different axial positions in the fixed bed reactor. (a) A1; (b) A2; (c) A3.
Axial Position | TOS (min) | σD (cm-1) | σG (cm-1) | ΓD (cm-1) | ΓG (cm-1) | ID1/IG | La (nm) |
---|---|---|---|---|---|---|---|
A1 | 50 | 1348 | 1593 | 174 | 65 | 0.66 | 1.09 |
100 | 1348 | 1595 | 137 | 65 | 0.67 | 1.10 | |
150 | 1346 | 1590 | 161 | 71 | 0.65 | 1.09 | |
A2 | 50 | 1344 | 1592 | 175 | 65 | 0.64 | 1.08 |
100 | 1343 | 1592 | 157 | 63 | 0.66 | 1.10 | |
150 | 1348 | 1599 | 169 | 63 | 0.63 | 1.07 | |
A3 | 50 | 1345 | 1597 | 147 | 62 | 0.68 | 1.11 |
100 | 1346 | 1595 | 167 | 64 | 0.66 | 1.10 | |
150 | 1351 | 1597 | 100 | 61 | 0.78 | 1.19 |
Table 3 Evolution of deconvolution parameters of the Raman spectra with time on stream at different axial positions in the fixed bed reactor.
Axial Position | TOS (min) | σD (cm-1) | σG (cm-1) | ΓD (cm-1) | ΓG (cm-1) | ID1/IG | La (nm) |
---|---|---|---|---|---|---|---|
A1 | 50 | 1348 | 1593 | 174 | 65 | 0.66 | 1.09 |
100 | 1348 | 1595 | 137 | 65 | 0.67 | 1.10 | |
150 | 1346 | 1590 | 161 | 71 | 0.65 | 1.09 | |
A2 | 50 | 1344 | 1592 | 175 | 65 | 0.64 | 1.08 |
100 | 1343 | 1592 | 157 | 63 | 0.66 | 1.10 | |
150 | 1348 | 1599 | 169 | 63 | 0.63 | 1.07 | |
A3 | 50 | 1345 | 1597 | 147 | 62 | 0.68 | 1.11 |
100 | 1346 | 1595 | 167 | 64 | 0.66 | 1.10 | |
150 | 1351 | 1597 | 100 | 61 | 0.78 | 1.19 |
IR band (cm−1) | Functional group |
---|---|
1260 | stretching vibration of C-O bonds in alcohols, ethers or related compounds, and/or stretching asymmetric vibrational mode of C-O-C bonds C-O bonds in acetate groups (AC), phenolic esters (P,ES) and/or ethers (ET) bonded to aliphatic compounds and/or alkenes |
1390 | C-H in aliphatic compounds (AL) |
1420 | O=C-O in acetate groups (AC) // methoxyl group or C-H in aliphatic compounds, 1420-1490 cm−1 |
1450 | bending vibrations in -CH2 and -CH3 aliphatic groups, alkylaromatic compounds and/or symmetric stretching vibrations of O=C-O bonds in acetate groups (AC, AL, AA) |
1505 | Symmetric stretching vibrations of O=C-O bonds in carbonate groups and/or C=C in low condensed aromatic compounds |
1525 | O=C-O in carbonates (CA) |
1580 | C=C in polycondensed aromatic compounds or asymmetric stretching vibrations of O=C-O bonds in acetate groups |
1610 | dienes and/or conjugated double bonds (DI) |
2850, 2925 and 2960 | stretching vibration of C-H in -CHn aliphatic groups (AL) |
Table 4 Functional groups associated with IR bands.
IR band (cm−1) | Functional group |
---|---|
1260 | stretching vibration of C-O bonds in alcohols, ethers or related compounds, and/or stretching asymmetric vibrational mode of C-O-C bonds C-O bonds in acetate groups (AC), phenolic esters (P,ES) and/or ethers (ET) bonded to aliphatic compounds and/or alkenes |
1390 | C-H in aliphatic compounds (AL) |
1420 | O=C-O in acetate groups (AC) // methoxyl group or C-H in aliphatic compounds, 1420-1490 cm−1 |
1450 | bending vibrations in -CH2 and -CH3 aliphatic groups, alkylaromatic compounds and/or symmetric stretching vibrations of O=C-O bonds in acetate groups (AC, AL, AA) |
1505 | Symmetric stretching vibrations of O=C-O bonds in carbonate groups and/or C=C in low condensed aromatic compounds |
1525 | O=C-O in carbonates (CA) |
1580 | C=C in polycondensed aromatic compounds or asymmetric stretching vibrations of O=C-O bonds in acetate groups |
1610 | dienes and/or conjugated double bonds (DI) |
2850, 2925 and 2960 | stretching vibration of C-H in -CHn aliphatic groups (AL) |
Fig. 9. Evolution with time on stream of the relative intensities of several representative FTIR bands corresponding to functional groups of the coke deposited at different axial positions in the fixed bed reactor: (a) A1; (b) A2; (c) A3. Abbreviations: aromatics (A), alkyl aromatics (AA), acetates (AC), aliphatics (AL), carbonates (CA), dienes (DI), esters (ES), ethers (ET), phenols (P), polyaromatics (PA).
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[3] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[4] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[5] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[6] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[7] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[8] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[9] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[10] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[11] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[12] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[13] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[14] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[15] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||