Chinese Journal of Catalysis ›› 2023, Vol. 48: 32-65.DOI: 10.1016/S1872-2067(23)64429-8
• Reviews • Previous Articles Next Articles
Huanhuan Yanga, Shiying Lib, Qun Xua,c,*()
Received:
2022-12-04
Accepted:
2023-02-28
Online:
2023-05-18
Published:
2023-04-20
Contact:
* E-mail: About author:
Qun Xu (Henan Institute of Advanced Technology, College of Materials Science and Engineering, Zhengzhou University) is an associate editor for Energy & Environmental Materials (Wiley). Prof. Qun Xu obtained her PhD in Physical Chemistry from the Institute of Chemistry, Chinese Academy of Science in 1999. In 2001, she finished her post doctor work in Karlsruhe Nuclear Center in Germany and return back to China. In recent years, she focuses on the design, synthesis and performance exploration of novel nanostructures. She has made outstanding contribution on the utilization of supercritical CO2 for the fabrication of advanced materials, and their relevant applications in energy storage and (photo)electrocatalysis. She has published more than 150 papers in top journals in the recent 10 years as corresponding author (h-index = 55 and 10670 citations), including Angew. Chem. Int. Ed., Adv. Mater., ACS Nano, Chem. Mater., and Adv. Funct. Mater., etc. Many papers were listed by ESI as the world’s top 1% highly cited papers and top 0.1% hot papers. She is one of the World Highly Cited Researchers in 2020, and World Top 2% Scientist (Stanford University).
Supported by:
Huanhuan Yang, Shiying Li, Qun Xu. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts[J]. Chinese Journal of Catalysis, 2023, 48: 32-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64429-8
Fig. 3. (a) HRTEM image of 1-octadecanethiol-treated Cu dendrite showing the alkanethiol layer attached to the Cu surface. (b) Contact angle measurements of Cu dendrite without (top; wettable) and with (bottom; hydrophobic) a 1-ochtadecanethiol coating. (c,d) Illustrations of the reaction mechanism of the hydrophobic dendrite showing enhanced CO2 mass transport from the triple-phase boundary between the electrolyte, electrode, and gaseous CO2 and the resultant formation of key products on the surface. (e) Product-formation FEs of the hydrophobic and wettable dendrites when passing an overall current density of -30?mA·cm-2 in 0.1 mol·L-1 CsHCO3. Reprinted with permission from Ref. [84]. Copyright 2019, Nature Publishing Group. (f) Photograph of a water droplet on a Setaria leaf and the corresponding contact angle image (inset). (g) SEM image of surface microstructures of a Setaria leaf. (h) SEM images of hierarchical Cu dendrites (Cu-D) with an apex half-angle of ~11° and the corresponding contact angle image (inset). (i) Stability test of Cu-D at a total current density of 300 mA·cm-2 in CO2-purged 1 mol·L-1 KOH. Reprinted with permission from Ref. [103]. Copyright 2021, American Chemical Society.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/ Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | H2 | |||||
Cu/C/PTFE a | -1.0 | 250 c | ~18 | ~24 | ~1 | ~9 | >50 | ~20 | flow cell 1 mol·L-1 KOH | [ |
Cu/C b | 138 | ~22 | ~8 | ~3 | ~4 | < 40 | >50 | |||
AEI-OD-Cu nanosheets a | — | 800 d | 18.1 | 62 | — | 0.6 | 81 | ~7 | flow cell/ 1 mol·L-1 KOH | [ |
PEI-OD-Cu nanosheets b | 18 | 46 | — | 2.5 | 66 | — | ||||
1-octadecanethiol-Cu dendrite a | — | 30 c | 17 | 56 | 1 | — | 74 | 10 | H-type cell/ 0.1 mol·L-1 CsHCO3 | [ |
Cu dendrite b | 9 | 4 | 0.4 | — | ~15 | 71 | ||||
Cu dendrite with nanoneedle tip a | -0.68 | 255 d | 23.7 | 30 | 8.5 | 1.6 | 64 | 17.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu particles b | ~60 | 4.3 | 13.1 | 6.8 | 1.1 | 25.3 | 27.5 | |||
Cu nanorod/porous organic cages a | -0.9 | 1700 c | 29.5 | 27.1 | — | 13.4 | 76.1 | ~8 | flow cell 1 mol·L-1 KOH | [ |
Cu nanorod b | ~270 | ~20 | ~30 | — | <10 | 64.5 | ~20 |
Table 1 CO2RR-to-C2+ performances over Cu-based catalysts modified with surface hydrophobization.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/ Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | H2 | |||||
Cu/C/PTFE a | -1.0 | 250 c | ~18 | ~24 | ~1 | ~9 | >50 | ~20 | flow cell 1 mol·L-1 KOH | [ |
Cu/C b | 138 | ~22 | ~8 | ~3 | ~4 | < 40 | >50 | |||
AEI-OD-Cu nanosheets a | — | 800 d | 18.1 | 62 | — | 0.6 | 81 | ~7 | flow cell/ 1 mol·L-1 KOH | [ |
PEI-OD-Cu nanosheets b | 18 | 46 | — | 2.5 | 66 | — | ||||
1-octadecanethiol-Cu dendrite a | — | 30 c | 17 | 56 | 1 | — | 74 | 10 | H-type cell/ 0.1 mol·L-1 CsHCO3 | [ |
Cu dendrite b | 9 | 4 | 0.4 | — | ~15 | 71 | ||||
Cu dendrite with nanoneedle tip a | -0.68 | 255 d | 23.7 | 30 | 8.5 | 1.6 | 64 | 17.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu particles b | ~60 | 4.3 | 13.1 | 6.8 | 1.1 | 25.3 | 27.5 | |||
Cu nanorod/porous organic cages a | -0.9 | 1700 c | 29.5 | 27.1 | — | 13.4 | 76.1 | ~8 | flow cell 1 mol·L-1 KOH | [ |
Cu nanorod b | ~270 | ~20 | ~30 | — | <10 | 64.5 | ~20 |
Fig. 4. (a) CO2 desorption curves of CuO/Cu-MOF and commercial CuO [CuO (coml)]. Reprinted with permission from Ref. [10]. Copyright 2022, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Elsevier B.V. (b) Schematic illustration of the process of specific adsorption of halide ions, adsorption of CO2, and subsequent electrochemical reduction. Reprinted with permission from Ref. [117] Copyright 2022, The Royal Society of Chemistry. (c) Free energy profiles (at U = -0.9 V vs. SHE) for CO2 activation on a metallic matrix (blue), fully oxidized matrix (red), and metal embedded in an oxidized matrix (green). Reprinted with permission from Ref. [118]. Copyright 2017, PNAS.
Fig. 5. (a) FEs of C2+ products obtained for various catalysts: Ag nanocubes (NCs), Ag65-Cu35 JNS-100, Ag50-Cu50 JNS-100, Ag25-Cu75 JNS-100, Ag+Cu mixture, and Cu NCs at -1.2 V vs. RHE. (b) C2+/C1 product ratios for Ag65-Cu35 JNS-100, Ag+Cu mixture, and Cu NCs. Reprinted with permission from Ref. [136]. Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (c) CO and C2 FE values for Cu@Ag NPs at -1.1 V vs. RHE. Reprinted with permission from Ref. [138]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. FEs (d) and partial current density (e) of CO, C2H4, and C2+ products at -0.72 ± 0.10 V vs. RHE over a bare Cu1.0 electrode, Cu1.0-ZnO0.20 mixed electrode, and Cu1.0/ZnO0.20 tandem electrode. Reprinted with permission from Ref. [132]. Copyright 2020, Elsevier Inc. (f) C2H4 and CH4 FE values as a function of potential measured over PTF(Ni)/Cu and PTF/Cu catalysts. Reprinted with permission from Ref. [146]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (g) Common structures of bifunctional catalysts and a schematic illustration of a possible CO2RR-to-C2+ mechanism.
Fig. 6. (a) HAADF-STEM image of Cu nanoneedles (Cu NN) with a PTFE coverage rate of 99% (Cu-PTFE-99NN). (b) Electric-field enhancement factor and concentration of adsorbed K+ ions on the surface of electrodes at a potential of -1.5 V vs. RHE. (c) Infrared thermal images of the electrodes (top) and corresponding thermal field magnitude (bottom) at a constant applied current. (d) Schematic illustration of the synergetic effect of the tip-induced electric-thermal field on promoting C2 formation. (e) Stretching band areas of atop-bound COL in the 1950-2150 cm-1 range from in-situ ATR-IR spectra as a function of the applied potential. (f) FE of C2 products over Cu-PTFE-99NN as a function of the current density in a flow cell. Reprinted with permission from Ref. [77]. Copyright 2022, American Chemical Society.
Fig. 7. (a) Relationship between FEC2H4 and the ratio of COatop to CObridge. (b) Energy barriers of dimerization of two bridge-site CO and two CO at bridge and atop sites. (c) FEC2H4 on Cu and N,N?-(1,4-phenylene)bispyridinium-derived oligomer modified Cu (Cu-12) in 1 mol·L-1 KHCO3. Reprinted with permission from Ref. [160]. Copyright 2020, Nature Publishing Group. (d) SEIRAS spectra used to analyze the potential dependence of the C≡O stretch band of COatop on Cu-Si and CuAu-Si. (e) Differential electrochemical mass spectrometry spectra for Cu-Si and CuAu-Si in contact with CO-saturated 0.1 mol·L-1 potassium phosphate buffer at pH 7. Reprinted with permission from Ref. [162]. Copyright 2020, American Chemical Society. (f) Raman spectra of anodized Cu-MP (mechanically polished polycrystalline Cu) during reduction at -0.7, -0.8, and -0.9 V vs. RHE. (g) FEs of different products over anodized Cu-MP during CO2RR at -0.7, -0.8, and -0.9 V vs. RHE. Reprinted with permission from Ref. [66]. Copyright 2021, The Authors.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/electrolyte | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | |||||
AgI-CuO a | -1.0 | 18.2 d | 19.7 | 49.2 | — | — | 68.9 | H-type cell/ 0.25 mol·L-1 KHCO3 | [ |
CuO nanosheets b | -0.95 | — | ~4 | ~21 | — | — | 24.8 | ||
CuAu a | -1.05 | 30 d | 23 | 39 | — | — | 70 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanowires b | 15 | 13-16 | 30-33 | — | — | 55 | |||
Pd-Cu decahedra a | -1.0 | 30 c | 11.6 | 34 | 0.6 | 4.8 | 51 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Cu twinned nanoparticles b | ~37 | — | — | — | — | 37.6 | |||
Cu/ZnO a | -0.73 | 466 d | ~20 | 49 | — | — | 78 | flow cell/ 1 mol·L-1 KOH | [ |
Cu nanoparticles b | 137 | ~20 | ~40 | — | — | 65 | |||
PTF(Ni)/Cu a | -1.1 | 5.5 c | — | 57.3 | — | — | 57.3 | H-type cell/ 0.1 mol·L-1 KHCO3+KCl | [ |
PTF/Cu b | 2 | — | 9.6 | — | — | 9.6 | |||
Cu-PTFE nanoneedle a | -1.5 | 54 d | 42.3 | 43.1 | — | — | 85.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanoneedle b | 35 | 19 | 24 | — | — | 43 | |||
Cu-12 a | -0.83 | ~320 c | 10.5 | 71.5 | 1.5 | 2.1 | 85.6 | flow cell/ 1 mol·L-1 KHCO3 | [ |
Cu b | -0.84 | ~364 | 15.5 | 43.9 | 1.2 | 3.9 | 64.5 |
Table 2 CO2RR-to-C2+ performance over Cu-based catalysts via modulating CO generation and adsorption.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor/electrolyte | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | |||||
AgI-CuO a | -1.0 | 18.2 d | 19.7 | 49.2 | — | — | 68.9 | H-type cell/ 0.25 mol·L-1 KHCO3 | [ |
CuO nanosheets b | -0.95 | — | ~4 | ~21 | — | — | 24.8 | ||
CuAu a | -1.05 | 30 d | 23 | 39 | — | — | 70 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanowires b | 15 | 13-16 | 30-33 | — | — | 55 | |||
Pd-Cu decahedra a | -1.0 | 30 c | 11.6 | 34 | 0.6 | 4.8 | 51 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Cu twinned nanoparticles b | ~37 | — | — | — | — | 37.6 | |||
Cu/ZnO a | -0.73 | 466 d | ~20 | 49 | — | — | 78 | flow cell/ 1 mol·L-1 KOH | [ |
Cu nanoparticles b | 137 | ~20 | ~40 | — | — | 65 | |||
PTF(Ni)/Cu a | -1.1 | 5.5 c | — | 57.3 | — | — | 57.3 | H-type cell/ 0.1 mol·L-1 KHCO3+KCl | [ |
PTF/Cu b | 2 | — | 9.6 | — | — | 9.6 | |||
Cu-PTFE nanoneedle a | -1.5 | 54 d | 42.3 | 43.1 | — | — | 85.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Cu nanoneedle b | 35 | 19 | 24 | — | — | 43 | |||
Cu-12 a | -0.83 | ~320 c | 10.5 | 71.5 | 1.5 | 2.1 | 85.6 | flow cell/ 1 mol·L-1 KHCO3 | [ |
Cu b | -0.84 | ~364 | 15.5 | 43.9 | 1.2 | 3.9 | 64.5 |
Fig. 8. (a) FE for CO2RR products on Cu nanowire arrays with different lengths at -1.1 V vs. RHE in CO2-saturated 0.1 mol·L-1 KHCO3 (0 μm nanowire is a Cu foil). Reprinted with permission from Ref. [44]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Computed concentration and distribution of CO2 species (b) C1 (c), C2 (d), and C3 (e) on a multi-hollow structure (color scales in mol·L-1). FE (f) and partial current density values (g) of C2+ and C1 on catalysts at different potentials. Reprinted with permission from Ref. [183]. Copyright 2020, American Chemical Society. CO2RR product distributions (h) and C2+ partial current density (i) over catalysts with 1-3 shell at different potentials. Reprinted with permission from Ref. [184]. Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (j) Schematic illustration of the confinement effect over confinement structures that promotes intermediate concentration and further conversion to C2+ products.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor / Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | ||||||
Confinement structures | Cu nanowires a | -1.1 | 4 c | 3.8 | 17.4 | — | 7.8 | 30 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Polycrystalline Cu b | 1.5 | — | 2 | — | — | 2 | ||||
Reduced Cu-I with hierarchical pores a | -1.09 | 21d | ~17 | 59.9 | — | — | 80 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Electropolished polycrystalline Cu b | — | — | ~22 | — | — | < 25 | ||||
Multihole Cu2O a | -0.61 | 267 d | 26 | 37 | 4 | 6.2 | 75.2 | flow cell/ 2 mol·L-1 KOH | [ | |
Solid Cu2O b | 25 | ~12 | ~21 | ~2 | — | ~35 | ||||
Cu/hollow mesoporous carbon spheres a | -1.0 | ~270 c | 20.1 | 68.6 | — | — | 88.7 | flow cell/ 1 mol·L-1 KOH | [ | |
Valence state modulation | Oxygen-bearing Cu a | -0.95 | 44.7 d | — | 45 | — | — | 45 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Oxygen-free Cu b | ~2 | — | ~2 | — | — | ~2 | ||||
e-CuOHFCl nanosheets a | -1.0 | 15 d | 14.0 | 34.1 | 0.6 | 5.1 | 53.8 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu(OH)2 nanosheets b | — | — | 22.7 | — | — | > 20 | ||||
S-HKUST-1 a | — | 400 c | 27 | 57.2 | 4.2 | — | 88.4 | flow cell/ 1 mol·L-1 KOH | [ | |
HKUST-1 (Cu-MOF) b | 21.2 | 35.2 | 6.4 | — | 62.8 | |||||
Bare Cu b | 23.2 | 30.2 | 5.9 | — | 59.3 | |||||
Ionic liquid@Cu a | -1.49 | 34.2 c | — | 77.3 | — | — | 77.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure Cu b | 19.7 | — | 31.2 | — | — | 31.2 | ||||
Defects | Heat-quenched Cu a | -1.05 | 45 d | ~11 | ~35 | ~1 | ~2 | 68.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Anodized Cu a | 35 | ~10 | ~29 | ~2 | ~3 | 62.3 | ||||
Electropolished Cu b | 0.7 | — | ~1 | — | — | < 10 | ||||
Bi-CuO(VO) a | -1.05 | 9 d | — | 48.2 | — | — | 48.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure CuO b | 5 | — | 24 | — | — | 24 | ||||
Cu(OH)2-D/Cu foil a | -0.54 | 217 d | 22 | 58 | — | 7 | 87 | flow cell/1 mol·L-1 KOH | [ | |
Monatomic Cu | Cu/C a | -0.7 | 1.23 c | 91 | — | — | — | >90 | 0.1 mol·L-1 KHCO3 e | [ |
PcCu-TFPN (COF) a | -0.8 | 12.5 c | — | — | 90.3 | — | 90.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
PcCu-Cu-O b | -1.2 | — | — | ~50 | — | — | ~50 | |||
Heterojunction | 34% N-C/Cu a | — | 300 c | 52.3 | 37.5 | 2.3 | 1.4 | 93.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu b | 31.4 | 48.2 | 2.3 | 2.6 | 84.5 | |||||
Cu/ZrO2 a | -1.05 | 24.4 c | ~30 | ~43 | ~10 | — | 84.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu foil b | 10 | ~6 | ~17 | — | — | 22.7 |
Table 3 CO2RR-to-C2+ performances for Cu-based catalysts modified with different strategies for promoting C-C coupling.
Catalyst | Potential (V vs. RHE) | j (mA·cm-2) | FE (%) | Reactor / Electrolyte | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ethanol | Ethylene | Acetate | Propanol | C2+ | ||||||
Confinement structures | Cu nanowires a | -1.1 | 4 c | 3.8 | 17.4 | — | 7.8 | 30 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Polycrystalline Cu b | 1.5 | — | 2 | — | — | 2 | ||||
Reduced Cu-I with hierarchical pores a | -1.09 | 21d | ~17 | 59.9 | — | — | 80 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Electropolished polycrystalline Cu b | — | — | ~22 | — | — | < 25 | ||||
Multihole Cu2O a | -0.61 | 267 d | 26 | 37 | 4 | 6.2 | 75.2 | flow cell/ 2 mol·L-1 KOH | [ | |
Solid Cu2O b | 25 | ~12 | ~21 | ~2 | — | ~35 | ||||
Cu/hollow mesoporous carbon spheres a | -1.0 | ~270 c | 20.1 | 68.6 | — | — | 88.7 | flow cell/ 1 mol·L-1 KOH | [ | |
Valence state modulation | Oxygen-bearing Cu a | -0.95 | 44.7 d | — | 45 | — | — | 45 | H-type cell/ 0.5 mol·L-1 KHCO3 | [ |
Oxygen-free Cu b | ~2 | — | ~2 | — | — | ~2 | ||||
e-CuOHFCl nanosheets a | -1.0 | 15 d | 14.0 | 34.1 | 0.6 | 5.1 | 53.8 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu(OH)2 nanosheets b | — | — | 22.7 | — | — | > 20 | ||||
S-HKUST-1 a | — | 400 c | 27 | 57.2 | 4.2 | — | 88.4 | flow cell/ 1 mol·L-1 KOH | [ | |
HKUST-1 (Cu-MOF) b | 21.2 | 35.2 | 6.4 | — | 62.8 | |||||
Bare Cu b | 23.2 | 30.2 | 5.9 | — | 59.3 | |||||
Ionic liquid@Cu a | -1.49 | 34.2 c | — | 77.3 | — | — | 77.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure Cu b | 19.7 | — | 31.2 | — | — | 31.2 | ||||
Defects | Heat-quenched Cu a | -1.05 | 45 d | ~11 | ~35 | ~1 | ~2 | 68.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ |
Anodized Cu a | 35 | ~10 | ~29 | ~2 | ~3 | 62.3 | ||||
Electropolished Cu b | 0.7 | — | ~1 | — | — | < 10 | ||||
Bi-CuO(VO) a | -1.05 | 9 d | — | 48.2 | — | — | 48.2 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Pure CuO b | 5 | — | 24 | — | — | 24 | ||||
Cu(OH)2-D/Cu foil a | -0.54 | 217 d | 22 | 58 | — | 7 | 87 | flow cell/1 mol·L-1 KOH | [ | |
Monatomic Cu | Cu/C a | -0.7 | 1.23 c | 91 | — | — | — | >90 | 0.1 mol·L-1 KHCO3 e | [ |
PcCu-TFPN (COF) a | -0.8 | 12.5 c | — | — | 90.3 | — | 90.3 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
PcCu-Cu-O b | -1.2 | — | — | ~50 | — | — | ~50 | |||
Heterojunction | 34% N-C/Cu a | — | 300 c | 52.3 | 37.5 | 2.3 | 1.4 | 93.5 | flow cell/ 1 mol·L-1 KOH | [ |
Cu b | 31.4 | 48.2 | 2.3 | 2.6 | 84.5 | |||||
Cu/ZrO2 a | -1.05 | 24.4 c | ~30 | ~43 | ~10 | — | 84.4 | H-type cell/ 0.1 mol·L-1 KHCO3 | [ | |
Cu foil b | 10 | ~6 | ~17 | — | — | 22.7 |
Fig. 9. (a) In-situ ATR-IR of 20% Cu/CuSiO3 at different potentials. (b) FE test of 20% Cu/CuSiO3. (c) Calculated formation energy of *COCOH and adsorption energy of *CO on Cu0, Cu+ and Cu0-Cu+ sites. Reprinted with permission from Ref. [158]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. FE (d) and partial current density (e) of C2+ over Cu-CuI, Cu-Cu2O, and Cu2O electrodes. (f) TEM and HRTEM images of Cu-CuI catalyst pretreated with 1 mol·L-1 KOH with a Cu0/Cu+ interface. (g) Adsorption energy and adsorption configurations of *CO on model catalysts. Reprinted with permission from Ref. [197]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (h) DFT-calculated CO adsorption energy (Ead) increases with increasing partial positive oxidation state of Cu. (i) DFT-calculated CO=CO dimerization energy as a function of the average adsorption energy of two adsorbed CO molecules. 1[B], 2[B], 3[B], 4[B] and 8[B] refer to boron-doped copper catalysts with subsurface boron concentrations of 1/16, 1/8, 3/16, 1/4 and 1/2 monolayers, respectively. (j) FEs of C2 and C1 at different copper oxidation states on Cu(B) at -1.1 V vs. RHE. Cu(B)-1, Cu(B)-2, Cu(B)-3, Cu(B)-4 and Cu(B)-5 refer to experimental Cu(B) catalysts with B/Cu(%) of 1.3, 1.7, 1.9, 2.0, 2.2. Reprinted with permission from Ref. [198]. Copyright 2018, Nature Publishing Group. (k) C2+ FE as a function of the specific current density over a N2SN functionalized electrode. (l) C2+ and H2 FE values measured at -1.2 V vs. RHE as a function of the Cu oxidation state. (m) Relationship between the C2+ FE and COatop/CObridge ratio for modified electrodes. P, N2SN, N3N, C2N and C3 refer to pristine, 5-Amino-1,3,4-thiadiazole-2-thiol, 3-amino-1,2,4-triazole-5-thiol, cysteamine and 1-propanethiol functionalized Ag-Cu samples, respectively. Reprinted with permission from Ref. [199]. Copyright 2021, Nature Publishing Group.
Fig. 10. (a) Calculated energy diagrams for CuSx-SSV (single sulfur vacancy) and CuSx-DSV (double sulfur vacancy) at 0 V vs. RHE. (b) HAADF-STEM image of CuSx-DSV and (c) corresponding intensity profile measured along the blue line in (b). The pink and yellow spheres, and yellow dashed circles indicate copper, sulfur atoms, and sulfur vacancies, respectively. (d) CO2RR product distribution using CuSx-DSV catalysts in H-cells. Reprinted with permission from Ref. [52]. Copyright 2021, Nature Publishing Group. (e) Aberration-corrected HAADF-TEM images of Cu(OH)2-D. (f) Activation energy barrier of CO dimerization. (g) C2+ partial current density and FE of Cu(OH)2-D evaluated in a flow cell with 1 mol·L-1 KOH. Reprinted with permission from Ref. [37]. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
Fig. 11. (a) Two possible processes (I: with intramolecular protons; II: with exogenous protons) for the hydrogenation of *CO to *CHO on CuBtz during CO2RR. (b) Gibbs free-energy barriers of the elementary steps during the CO2RR pathway. FEs of CuBtz measured using an H-type cell with 0.1 mol·L-1 KHCO3 electrolyte (c) and a flow cell with 1 mol·L-1 KOH electrolyte (d). Reprinted with permission from Ref. [235]. Copyright 2022, American Chemical Society. (e) Mechanisms of the CO2RR to produce CH3COOH, C2H4, and C2H5OH. (f) Electron densities and optimized structures of *CO intermediates for CuSAC, Cu-porphyrin, and PcCu-TFPN. (g) Free energy diagrams of *CH3 and *OOCCH3 for Cu-porphyrin and PcCu-TFPN. Insets show the electron densities of *CH3 intermediates. (h) FEs of CO2RR products over PcCu-TFPN under different potentials. Reprinted with permission from Ref. [50]. Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
|
[1] | Wenqian Yang, Ziqian Xue, Jun Yang, Jiahui Xian, Qinglin Liu, Yanan Fan, Kai Zheng, Peiqin Liao, Hui Su, Qinghua Liu, Guangqin Li, Cheng-Yong Su. Fe nanoparticles embedded in N-doped porous carbon for enhanced electrocatalytic CO2 reduction and Zn-CO2 battery [J]. Chinese Journal of Catalysis, 2023, 48(5): 185-194. |
[2] | Lei Bian, Zi-Yang Zhang, Hao Tian, Na-Na Tian, Zhi Ma, Zhong-Li Wang. Grain boundary-abundant copper nanoribbons on balanced gas-liquid diffusion electrodes for efficient CO2 electroreduction to C2H4 [J]. Chinese Journal of Catalysis, 2023, 54(11): 199-211. |
[3] | Han Zheng, Zhengwu Yang, Xiangdong Kong, Zhigang Geng, Jie Zeng. Progresses on carbon dioxide electroreduction into methane [J]. Chinese Journal of Catalysis, 2022, 43(7): 1634-1641. |
[4] | Ernest Pahuyo Delmo, Yian Wang, Jing Wang, Shangqian Zhu, Tiehuai Li, Xueping Qin, Yibo Tian, Qinglan Zhao, Juhee Jang, Yinuo Wang, Meng Gu, Lili Zhang, Minhua Shao. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1687-1696. |
[5] | Qian Sun, Chen Jia, Yong Zhao, Chuan Zhao. Single atom-based catalysts for electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1547-1597. |
[6] | Ming He, Bingjun Xu, Qi Lu. Probing the role of surface speciation of tin oxide and tin catalysts on CO2 electroreduction combining in situ Raman spectroscopy and reactivity investigations [J]. Chinese Journal of Catalysis, 2022, 43(6): 1473-1477. |
[7] | Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. Solution chemistry back-contact FTO/hematite interface engineering for efficient photocatalytic water oxidation [J]. Chinese Journal of Catalysis, 2022, 43(5): 1247-1257. |
[8] | HuangJingWei Li, Huimin Zhou, Yajiao Zhou, Junhua Hu, Masahiro Miyauchi, Junwei Fu, Min Liu. Electric-field promoted C-C coupling over Cu nanoneedles for CO2 electroreduction to C2 products [J]. Chinese Journal of Catalysis, 2022, 43(2): 519-525. |
[9] | Huijie Wang, Xin Li, Xiaoxue Zhao, Chunyan Li, Xianghai Song, Peng Zhang, Pengwei Huo, Xin Li. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies [J]. Chinese Journal of Catalysis, 2022, 43(2): 178-214. |
[10] | Jun Gong, Jinmeng Li, Chang Liu, Fengyuan Wei, Jinlong Yin, Wenzheng Li, Li Xiao, Gongwei Wang, Juntao Lu, Lin Zhuang. Guanine-regulated proton transfer enhances CO2-to-CH4 selectivity over copper electrode [J]. Chinese Journal of Catalysis, 2022, 43(12): 3101-3106. |
[11] | Tongbao Wang, Guangtai Han, Ziyun Wang, Yuhang Wang. Overcoming coke formation in high-temperature CO2 electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(12): 2938-2945. |
[12] | Jun Hu, Yangyang Li, Yanping Zhen, Mingshu Chen, Huilin Wan. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation [J]. Chinese Journal of Catalysis, 2021, 42(3): 367-375. |
[13] | Jiaqi Shao, Yi Wang, Dunfeng Gao, Ke Ye, Qi Wang, Guoxiong Wang. Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide [J]. Chinese Journal of Catalysis, 2020, 41(9): 1393-1400. |
[14] | Dongni Yu, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li. Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde [J]. Chinese Journal of Catalysis, 2019, 40(9): 1375-1384. |
[15] | Denghui Jiang, Yuegang Zhang, Xinheng Li. Synergistic effects of CuO and Au nanodomains on Cu2O cubes for improving photocatalytic activity and stability [J]. Chinese Journal of Catalysis, 2019, 40(1): 105-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||