Chinese Journal of Catalysis ›› 2023, Vol. 50: 6-44.DOI: 10.1016/S1872-2067(23)64464-X
• Account • Previous Articles Next Articles
Ling Ouyanga,b, Jie Liangb, Yongsong Luob, Dongdong Zhengb, Shengjun Sunc, Qian Liud, Mohamed S. Hamdye, Xuping Sunb,c,*(), Binwu Yinga,*()
Received:
2023-02-18
Accepted:
2023-05-29
Online:
2023-07-18
Published:
2023-07-25
Contact:
*E-mail: About author:
Xuping Sun received his PhD degree in Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences in 2006. During 2006-2009, he carried out postdoctoral researches at Konstanz University, University of Toronto, and Purdue University. In 2010, he started his independent research career as a full Professor at CIAC and then moved to Sichuan University in 2015. In 2018, he joined University of Electronic Science and Technology of China where he found the Research Center of Nanocatalysis & Sensing. He was recognized as a highly cited researcher (2018-2020) in both areas of chemistry and materials science by Clarivate Analytics. He published over 600 papers with total citations over 65000 and an h-index of 132. His research mainly focuses on rational design of nanocatalysts toward applications in electrosynthesis of green hydrogen and ammonia as well as electrochemical denitration of vehicle exhausts and industrial wastewater.Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis[J]. Chinese Journal of Catalysis, 2023, 50: 6-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64464-X
Fig. 2. Possible reaction mechanisms for the NRR. The numbers in circles denote the order of the proton-electron transfer to the nitrogen designated by the arrow. Reprinted with permission from Ref. [45]. Copyright 2019, Elsevier.
Fig. 3. (a) FTIR spectra during the first segment from 0.4 to -0.4 V on a Rh-film electrode in a N2-saturated 0.1 mol L?1 KOH solution. (b) DEMS of H2+, N2H+, and N2H2+ on Rh/C during a scan from 0.4 to -0.4 V in a N2-saturated 0.1 mol L?1 KOH solution. (c) One possible reaction pathway for NRR on Rh surfaces. Reprinted with permission from Ref. [49]. Copyright 2020, Wiley-VCH.
Fig. 4. (a) Proposed volcano plot for NRR on late transition metals. Reprinted with permission from Ref. [50]. Copyright 2012, Royal Society of Chemistry. (b) Calculated limiting potential of NRR on transition metal oxides. Reprinted with permission from Ref. [51]. Copyright 2017, American Chemical Society. (c) Calculated limiting potential of NRR on transition metal nitrides. Reprinted with permission from Ref. [52]. Copyright 2017, American Chemical Society. (d) Volcano diagrams for NRR on M2C catalysts. Reprinted with permission from Ref. [54]. Copyright 2020, Royal Society of Chemistry. (e) Calculated limiting potential of NRR on MBenes. Reprinted with permission from Ref. [55]. Copyright 2021, Wiley-VCH. (f) Computational screening of 14 catalyst combinations in terms of ΔGmaxHER and ΔGmaxNRR vs. Bader charge of single boron in or on a 2D substrate. Reprinted with permission from Ref. [56]. Copyright 2019, American Chemical Society.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Ru@ZrO2/NC | H-cell, 0.1 mol L-1 HCl | 3.665 mgNH3 h-1 mgRu-1 | 15 | -0.21 | [ | |||
THH Au NRs | H-cell, 0.1 mol L-1 NaOH | 1.468 µg h-1 cm-2 | ~4 | -0.2 | [ | |||
Pd-TA | H-cell, 0.1 mol L-1 Na2SO4 | 24.12 µg h-1 mgcat.-1 | 9.49 | -0.45 | [ | |||
Ag/CPE | H-cell, 0.1 mol L-1 HCl | 4.62 × 10-11 mol s-1 cm-2 | 4.8 | -0.6 | [ | |||
Nb2O5/CC | H-cell, 0.1 mol L-1 Na2SO4 | 1.58 × 10-10 mol s-1 cm-2 | 2.26 | -0.6 | [ | |||
TiO2/Ti3C2Tx MXene | H-cell, 0.1 mol L-1 Na2SO4 | 44.17 µg h-1 mgcat.-1 | 44.68 | -0.95, -0.75 | [ | |||
np-CuMn | H-cell, 0.1 mol L-1 Na2SO4 | 28.9 µg h-1 cm-2 | 9.83 | -0.3 | [ | |||
Mn3O4@rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 17.4 µg h-1 mgcat.-1 | 3.52 | -0.85 | [ | |||
Cr2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 | 25.3 µg h-1 mgcat.-1 | 6.78 | -0.9 | [ | |||
a-VSe2‒x | H-cell, 0.5 mol L-1 LiClO4 | 65.7 µg h-1 mg-1 | 16.3 | -0.4 | [ | |||
TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 | 9.16 × 10-11 mol s-1 cm-2 | 2.5 | -0.7 | [ | |||
d-TiO2/TM | H-cell, 0.1 mol L-1 HCl | 1.24 × 10-10 mol s-1 cm-2 | 9.17 | -0.15 | [ | |||
La-TiO2/CP | H-cell, 0.1 mol L-1 LiClO4 | 23.06 µg h-1 mgcat.-1 | 14.54 | -0.7 | [ | |||
V-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 17.73 µg h-1 mgcat.-1 | 15.3 | -0.5, -0.4 | [ | |||
Fe-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 25.47 µg h-1 mgcat.-1 | 25.6 | -0.4 | [ | |||
Mn-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.05 µg h-1 mgcat.-1 | 11.93 | -0.5 | [ | |||
Cu-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 21.31 µg h-1 mgcat.-1 | 21.99 | -0.55 | [ | |||
B-TiO2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 14.4 µg h-1 mgcat.-1 | 3.4 | -0.8 | [ | |||
C-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 16.22 µg h-1 mgcat.-1 | 1.84 | -0.7 | [ | |||
TiO2-rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 15.13 µg h-1 mgcat.-1 | 3.3 | -0.9 | [ | |||
TiO2/JE-CMTs/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.03 µg h-1 mgcat.-1 | 10.76 | -0.5 | [ | |||
Zr-TiO2/CP | H-cell, 0.1 mol L-1 KOH | 8.90 µg h-1 cm-2 | 17.3 | -0.45 | [ | |||
Fe2O3-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.13 µg h-1 mgcat.-1 | 5.89 | -0.5 | [ | |||
VO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 14.85 µg h-1 mgcat.-1 | 3.97 | -0.7 | [ | |||
V2O3/C-CP | H-cell, 0.1 mol L-1 Na2SO4 | 12.3 µg h-1 mgcat.-1 | 7.28 | -0.6 | [ | |||
β-FeOOH/CP | H-cell, 0.5 mol L-1 LiClO4 | 23.32 µg h-1 mgcat.-1 | 6.7 | -0.75, -0.7 | [ | |||
β-FeO(OH,F)/CP | H-cell, 0.5 mol L-1 LiClO4 | 42.38 µg h-1 mgcat.-1 | 9.02 | -0.6 | [ | |||
FeOOH QDs-GS/CP | H-cell, 0.1 mol L-1 LiClO4 | 27.3 µg h-1 mgcat.-1 | 14.6 | -0.4 | [ | |||
MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 8.08 × 10-11 mol s-1 cm-2 | 1.17 | -0.5 | [ | |||
DR MoS2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 29.28 µg h-1 mgcat.-1 | 8.34 | -0.4 | [ | |||
1T″′ MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 9.09 µg h-1 mg-1 | 13.6 | -0.3 | [ | |||
MoS2/C3N4 | H-cell, 0.1 mol L-1 LiClO4 | 18.5 μg h-1 mg-1 | 17.8 | -0.3 | [ | |||
CoS2/NS-G/CP | H-cell, 0.05 mol L-1 H2SO4 | 25.0 µg h-1 mgcat.-1 | 25.9 | -0.05 | [ | |||
CoS2@NC/CP | H-cell, 0.1 mol L-1 HCl | 17.45 µg h-1 mgcat.-1 | 4.6 | -0.15 | [ | |||
CuS-CPSs/CP | H-cell, 0.1 mol L-1 HCl | 18.18 µg h-1 mgcat.-1 | 5.63 | -0.15 | [ | |||
ZrS2 NF-Vs/CP | H-cell, 0.1 mol L-1 HCl | 30.72 µg h-1 mgcat.-1 | 10.33 | -0.35, -0.3 | [ | |||
MoN NA/CC | H-cell, 0.1 mol L-1 HCl | 3.01 × 10-10 mol s-1 cm-2 | 1.15 | -0.3 | [ | |||
VN/TM | H-cell, 0.1 mol L-1 HCl | 8.4 × 10-11 mol s-1 cm-2 | 2.25 | -0.5 | [ | |||
MV-MoN@NC | H-cell, 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat.-1 | 6.9 | -0.2 | [ | |||
Mo2N/GCE | H-cell, 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat.-1 | 4.5 | -0.3 | [ | |||
GDY/Co2N/CC | H-cell, 0.1 mol L-1 Na2SO4 | 219.72 µg h-1 mgcat.-1 | 58.6 | -0.2 | [ | |||
NV-W2N3 | H-cell, 0.1 mol L-1 KOH | 3.80 ± 0.32 × 10-11 mol s-1 cm-2 | 11.67 ± 0.93 | -0.2 | [ | |||
Cr3C2@CNF | H-cell, 0.1 mol L-1 HCl | 23.9 µg h-1 mgcat.-1 | 8.6 | -0.3 | [ | |||
TiC/C NFs | H-cell, 0.1 mol L-1 HCl | 14.1 µg h-1 mgcat.-1 | 5.8 | -0.5 | [ | |||
Mo2C/GCE | H-cell, 0.1 mol L-1 HCl | 95.1 µg h-1 mgcat.-1 | 8.13 | -0.3 | [ | |||
Fe3C@C | H-cell, 0.05 mol L-1 H2SO4 | 8.53 µg h-1 mgcat.-1 | 9.15 | -0.2 | [ | |||
Mo2C/C | H-cell, 0.5 mol L-1 Li2SO4 | 11.3 µg h-1 mgMo2C-1 | 7.8 | -0.3 | [ | |||
Mo3Fe3C | H-cell, 0.1 mol L-1 Li2SO4 | 72.5 µmol h-1 mgcat.-1 | 27.0 | -0.5 | [ | |||
V8C7/C-CP | H-cell, 0.1 mol L-1 HCl | 34.62 µg h-1 mgcat.-1 | 12.2 | -0.4 | [ | |||
VP/VF | H-cell, 0.1 mol L-1 HCl | 8.35 × 10-11 mol s-1 cm-2 | 22 | 0.0 | [ | |||
CoP3/CC | H-cell, 0.1 mol L-1 Na2SO4 | 3.61 × 10-11 mol s-1 cm-2 | 11.94 | -0.2 | [ | |||
Cu3P NRs | H-cell, 0.1 mol L-1 HCl | 18.9 µg h-1 mgcat.-1 | 37.8 | -0.2 | [ | |||
Cu3P-rGO/CP | H-cell, 0.1 mol L-1 HCl | 26.38 µg h-1 mgcat.-1 | 10.11 | -0.45 | [ | |||
FeP2-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 35.26 µg h-1 mgcat.-1 | 21.99 | -0.4 | [ | |||
C18@Fe3P/CP | H-cell, 0.1 mol L-1 Na2SO4 | 1.80 × 10-10 mol s-1 cm-2 | 11.22 | -0.3 | [ | |||
C18@CoP/TM | H-cell, 0.1 mol L-1 Na2SO4 | 1.44 × 10-10 mol s-1 cm-2 | 14.03 | -0.2 | [ | |||
Bi ND/CP | H-cell, 0.1 mol L-1 HCl | 25.86 µg h-1 mgcat.-1 | 10.8 | -0.6, -0.55 | [ | |||
dendritic Cu/CP | H-cell, 0.1 mol L-1 HCl | 25.63 µg h-1 mgcat.-1 | 15.12 | -0.4 | [ | |||
Sn dendrite/SF | H-cell, 0.1 mol L-1 PBS | 5.66 × 10-11 mol s-1 cm-2 | 3.67 | -0.6 | [ | |||
Co3HHTP2/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.14 µg h-1 mgcat.-1 | 3.34 | -0.4 | [ | |||
SA-Mo/NPC | H-cell, 0.1 mol L-1 KOH | 34.0 ± 3.6 μg h-1 mgcat.-1 | 14.6 ± 1.6 | -0.3 | [ | |||
FeSA-N-C/CP | H-cell, 0.1 mol L-1 KOH | 7.48 μg h-1 mg-1 | 56.55 | 0.0, 0.193 | [ | |||
NC-Cu SA | H-cell, 0.1 mol L-1 KOH | 53.3 μg h-1 mgcat.-1 | 13.8 | -0.35 | [ | |||
Y1/NC | H-cell, 0.1 mol L-1 HCl | 21.8 μg cm-1 h-1 | 12.1 | -0.1 | [ | |||
Sc1/NC | H-cell, 0.1 mol L-1 HCl | 19.2 μg cm-1 h-1 | 11.2 | -0.1 | [ | |||
W-NO/NC | H-cell, 0.5 mol L-1 LiClO4 | 12.62 μg h-1 mgcat.-1 | 8.35 | -0.7 | [ | |||
NCMs | H-cell, 0.1 mol L-1 HCl | 0.08 μg m-2 h-1 | 5.2 | -0.3, -0.2 | [ | |||
O-G/CP | H-cell, 0.1 mol L-1 HCl | 21.3 μg h-1 mgcat.-1 | 12.6 | -0.55, -0.45 | [ | |||
O-CN/CP | H-cell, 0.1 mol L-1 HCl | 20.15 μg h-1 mgcat.-1 | 4.97 | -0.6 | [ | |||
BG/CP | H-cell, 0.05 mol L-1 H2SO4 | 9.8 μg hr-1 cm-2 | 10.8 | -0.5 | [ | |||
PG/CP | H-cell, 0.5 mol L-1 LiClO4 | 32.33 μg h-1 mgcat.-1 | 20.82 | -0.65 | [ | |||
S-G/CP | H-cell, 0.1 mol L-1 HCl | 27.3 μg h-1 mgcat.-1 | 11.5 | -0.6, -0.5 | [ | |||
S-CNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 19.07 μg h-1 mgcat.-1 | 7.47 | -0.7 | [ | |||
d-FG/CP | H-cell, 0.1 mol L-1 Na2SO4 | 9.3 μg h-1 mgcat.-1 | 4.2 | -0.7 | [ | |||
BP/CP | H-cell, 0.1 mol L-1 HCl | 26.42 μg h-1 mgcat.-1 | 12.7 | -0.6 | [ | |||
BNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 13.22 μg h-1 mgcat.-1 | 4.04 | -0.8 | [ | |||
B4C/CPE | H-cell, 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat.-1 | 15.95 | -0.75 | [ | |||
h-BNNS/CP | H-cell, 0.1 mol L-1 HCl | 22.4 μg h-1 mgcat.-1 | 4.7 | -0.75 | [ |
Table 1 Summary of recently reported catalysts for electrochemical NRR in aqueous electrolytes a.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Ru@ZrO2/NC | H-cell, 0.1 mol L-1 HCl | 3.665 mgNH3 h-1 mgRu-1 | 15 | -0.21 | [ | |||
THH Au NRs | H-cell, 0.1 mol L-1 NaOH | 1.468 µg h-1 cm-2 | ~4 | -0.2 | [ | |||
Pd-TA | H-cell, 0.1 mol L-1 Na2SO4 | 24.12 µg h-1 mgcat.-1 | 9.49 | -0.45 | [ | |||
Ag/CPE | H-cell, 0.1 mol L-1 HCl | 4.62 × 10-11 mol s-1 cm-2 | 4.8 | -0.6 | [ | |||
Nb2O5/CC | H-cell, 0.1 mol L-1 Na2SO4 | 1.58 × 10-10 mol s-1 cm-2 | 2.26 | -0.6 | [ | |||
TiO2/Ti3C2Tx MXene | H-cell, 0.1 mol L-1 Na2SO4 | 44.17 µg h-1 mgcat.-1 | 44.68 | -0.95, -0.75 | [ | |||
np-CuMn | H-cell, 0.1 mol L-1 Na2SO4 | 28.9 µg h-1 cm-2 | 9.83 | -0.3 | [ | |||
Mn3O4@rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 17.4 µg h-1 mgcat.-1 | 3.52 | -0.85 | [ | |||
Cr2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 | 25.3 µg h-1 mgcat.-1 | 6.78 | -0.9 | [ | |||
a-VSe2‒x | H-cell, 0.5 mol L-1 LiClO4 | 65.7 µg h-1 mg-1 | 16.3 | -0.4 | [ | |||
TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 | 9.16 × 10-11 mol s-1 cm-2 | 2.5 | -0.7 | [ | |||
d-TiO2/TM | H-cell, 0.1 mol L-1 HCl | 1.24 × 10-10 mol s-1 cm-2 | 9.17 | -0.15 | [ | |||
La-TiO2/CP | H-cell, 0.1 mol L-1 LiClO4 | 23.06 µg h-1 mgcat.-1 | 14.54 | -0.7 | [ | |||
V-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 17.73 µg h-1 mgcat.-1 | 15.3 | -0.5, -0.4 | [ | |||
Fe-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 25.47 µg h-1 mgcat.-1 | 25.6 | -0.4 | [ | |||
Mn-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.05 µg h-1 mgcat.-1 | 11.93 | -0.5 | [ | |||
Cu-TiO2/CP | H-cell, 0.5 mol L-1 LiClO4 | 21.31 µg h-1 mgcat.-1 | 21.99 | -0.55 | [ | |||
B-TiO2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 14.4 µg h-1 mgcat.-1 | 3.4 | -0.8 | [ | |||
C-TiO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 16.22 µg h-1 mgcat.-1 | 1.84 | -0.7 | [ | |||
TiO2-rGO/CP | H-cell, 0.1 mol L-1 Na2SO4 | 15.13 µg h-1 mgcat.-1 | 3.3 | -0.9 | [ | |||
TiO2/JE-CMTs/CP | H-cell, 0.1 mol L-1 Na2SO4 | 20.03 µg h-1 mgcat.-1 | 10.76 | -0.5 | [ | |||
Zr-TiO2/CP | H-cell, 0.1 mol L-1 KOH | 8.90 µg h-1 cm-2 | 17.3 | -0.45 | [ | |||
Fe2O3-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.13 µg h-1 mgcat.-1 | 5.89 | -0.5 | [ | |||
VO2/CP | H-cell, 0.1 mol L-1 Na2SO4 | 14.85 µg h-1 mgcat.-1 | 3.97 | -0.7 | [ | |||
V2O3/C-CP | H-cell, 0.1 mol L-1 Na2SO4 | 12.3 µg h-1 mgcat.-1 | 7.28 | -0.6 | [ | |||
β-FeOOH/CP | H-cell, 0.5 mol L-1 LiClO4 | 23.32 µg h-1 mgcat.-1 | 6.7 | -0.75, -0.7 | [ | |||
β-FeO(OH,F)/CP | H-cell, 0.5 mol L-1 LiClO4 | 42.38 µg h-1 mgcat.-1 | 9.02 | -0.6 | [ | |||
FeOOH QDs-GS/CP | H-cell, 0.1 mol L-1 LiClO4 | 27.3 µg h-1 mgcat.-1 | 14.6 | -0.4 | [ | |||
MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 8.08 × 10-11 mol s-1 cm-2 | 1.17 | -0.5 | [ | |||
DR MoS2/CPE | H-cell, 0.1 mol L-1 Na2SO4 | 29.28 µg h-1 mgcat.-1 | 8.34 | -0.4 | [ | |||
1T″′ MoS2/CC | H-cell, 0.1 mol L-1 Na2SO4 | 9.09 µg h-1 mg-1 | 13.6 | -0.3 | [ | |||
MoS2/C3N4 | H-cell, 0.1 mol L-1 LiClO4 | 18.5 μg h-1 mg-1 | 17.8 | -0.3 | [ | |||
CoS2/NS-G/CP | H-cell, 0.05 mol L-1 H2SO4 | 25.0 µg h-1 mgcat.-1 | 25.9 | -0.05 | [ | |||
CoS2@NC/CP | H-cell, 0.1 mol L-1 HCl | 17.45 µg h-1 mgcat.-1 | 4.6 | -0.15 | [ | |||
CuS-CPSs/CP | H-cell, 0.1 mol L-1 HCl | 18.18 µg h-1 mgcat.-1 | 5.63 | -0.15 | [ | |||
ZrS2 NF-Vs/CP | H-cell, 0.1 mol L-1 HCl | 30.72 µg h-1 mgcat.-1 | 10.33 | -0.35, -0.3 | [ | |||
MoN NA/CC | H-cell, 0.1 mol L-1 HCl | 3.01 × 10-10 mol s-1 cm-2 | 1.15 | -0.3 | [ | |||
VN/TM | H-cell, 0.1 mol L-1 HCl | 8.4 × 10-11 mol s-1 cm-2 | 2.25 | -0.5 | [ | |||
MV-MoN@NC | H-cell, 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat.-1 | 6.9 | -0.2 | [ | |||
Mo2N/GCE | H-cell, 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat.-1 | 4.5 | -0.3 | [ | |||
GDY/Co2N/CC | H-cell, 0.1 mol L-1 Na2SO4 | 219.72 µg h-1 mgcat.-1 | 58.6 | -0.2 | [ | |||
NV-W2N3 | H-cell, 0.1 mol L-1 KOH | 3.80 ± 0.32 × 10-11 mol s-1 cm-2 | 11.67 ± 0.93 | -0.2 | [ | |||
Cr3C2@CNF | H-cell, 0.1 mol L-1 HCl | 23.9 µg h-1 mgcat.-1 | 8.6 | -0.3 | [ | |||
TiC/C NFs | H-cell, 0.1 mol L-1 HCl | 14.1 µg h-1 mgcat.-1 | 5.8 | -0.5 | [ | |||
Mo2C/GCE | H-cell, 0.1 mol L-1 HCl | 95.1 µg h-1 mgcat.-1 | 8.13 | -0.3 | [ | |||
Fe3C@C | H-cell, 0.05 mol L-1 H2SO4 | 8.53 µg h-1 mgcat.-1 | 9.15 | -0.2 | [ | |||
Mo2C/C | H-cell, 0.5 mol L-1 Li2SO4 | 11.3 µg h-1 mgMo2C-1 | 7.8 | -0.3 | [ | |||
Mo3Fe3C | H-cell, 0.1 mol L-1 Li2SO4 | 72.5 µmol h-1 mgcat.-1 | 27.0 | -0.5 | [ | |||
V8C7/C-CP | H-cell, 0.1 mol L-1 HCl | 34.62 µg h-1 mgcat.-1 | 12.2 | -0.4 | [ | |||
VP/VF | H-cell, 0.1 mol L-1 HCl | 8.35 × 10-11 mol s-1 cm-2 | 22 | 0.0 | [ | |||
CoP3/CC | H-cell, 0.1 mol L-1 Na2SO4 | 3.61 × 10-11 mol s-1 cm-2 | 11.94 | -0.2 | [ | |||
Cu3P NRs | H-cell, 0.1 mol L-1 HCl | 18.9 µg h-1 mgcat.-1 | 37.8 | -0.2 | [ | |||
Cu3P-rGO/CP | H-cell, 0.1 mol L-1 HCl | 26.38 µg h-1 mgcat.-1 | 10.11 | -0.45 | [ | |||
FeP2-rGO/CP | H-cell, 0.5 mol L-1 LiClO4 | 35.26 µg h-1 mgcat.-1 | 21.99 | -0.4 | [ | |||
C18@Fe3P/CP | H-cell, 0.1 mol L-1 Na2SO4 | 1.80 × 10-10 mol s-1 cm-2 | 11.22 | -0.3 | [ | |||
C18@CoP/TM | H-cell, 0.1 mol L-1 Na2SO4 | 1.44 × 10-10 mol s-1 cm-2 | 14.03 | -0.2 | [ | |||
Bi ND/CP | H-cell, 0.1 mol L-1 HCl | 25.86 µg h-1 mgcat.-1 | 10.8 | -0.6, -0.55 | [ | |||
dendritic Cu/CP | H-cell, 0.1 mol L-1 HCl | 25.63 µg h-1 mgcat.-1 | 15.12 | -0.4 | [ | |||
Sn dendrite/SF | H-cell, 0.1 mol L-1 PBS | 5.66 × 10-11 mol s-1 cm-2 | 3.67 | -0.6 | [ | |||
Co3HHTP2/CP | H-cell, 0.5 mol L-1 LiClO4 | 22.14 µg h-1 mgcat.-1 | 3.34 | -0.4 | [ | |||
SA-Mo/NPC | H-cell, 0.1 mol L-1 KOH | 34.0 ± 3.6 μg h-1 mgcat.-1 | 14.6 ± 1.6 | -0.3 | [ | |||
FeSA-N-C/CP | H-cell, 0.1 mol L-1 KOH | 7.48 μg h-1 mg-1 | 56.55 | 0.0, 0.193 | [ | |||
NC-Cu SA | H-cell, 0.1 mol L-1 KOH | 53.3 μg h-1 mgcat.-1 | 13.8 | -0.35 | [ | |||
Y1/NC | H-cell, 0.1 mol L-1 HCl | 21.8 μg cm-1 h-1 | 12.1 | -0.1 | [ | |||
Sc1/NC | H-cell, 0.1 mol L-1 HCl | 19.2 μg cm-1 h-1 | 11.2 | -0.1 | [ | |||
W-NO/NC | H-cell, 0.5 mol L-1 LiClO4 | 12.62 μg h-1 mgcat.-1 | 8.35 | -0.7 | [ | |||
NCMs | H-cell, 0.1 mol L-1 HCl | 0.08 μg m-2 h-1 | 5.2 | -0.3, -0.2 | [ | |||
O-G/CP | H-cell, 0.1 mol L-1 HCl | 21.3 μg h-1 mgcat.-1 | 12.6 | -0.55, -0.45 | [ | |||
O-CN/CP | H-cell, 0.1 mol L-1 HCl | 20.15 μg h-1 mgcat.-1 | 4.97 | -0.6 | [ | |||
BG/CP | H-cell, 0.05 mol L-1 H2SO4 | 9.8 μg hr-1 cm-2 | 10.8 | -0.5 | [ | |||
PG/CP | H-cell, 0.5 mol L-1 LiClO4 | 32.33 μg h-1 mgcat.-1 | 20.82 | -0.65 | [ | |||
S-G/CP | H-cell, 0.1 mol L-1 HCl | 27.3 μg h-1 mgcat.-1 | 11.5 | -0.6, -0.5 | [ | |||
S-CNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 19.07 μg h-1 mgcat.-1 | 7.47 | -0.7 | [ | |||
d-FG/CP | H-cell, 0.1 mol L-1 Na2SO4 | 9.3 μg h-1 mgcat.-1 | 4.2 | -0.7 | [ | |||
BP/CP | H-cell, 0.1 mol L-1 HCl | 26.42 μg h-1 mgcat.-1 | 12.7 | -0.6 | [ | |||
BNS/CP | H-cell, 0.1 mol L-1 Na2SO4 | 13.22 μg h-1 mgcat.-1 | 4.04 | -0.8 | [ | |||
B4C/CPE | H-cell, 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat.-1 | 15.95 | -0.75 | [ | |||
h-BNNS/CP | H-cell, 0.1 mol L-1 HCl | 22.4 μg h-1 mgcat.-1 | 4.7 | -0.75 | [ |
Fig. 5. (a) Isosurface of deformation charge density. (b) Free energy profile for NRR on MoS2 edge site. Reprinted with permission from Ref. [91]. Copyright 2018, Wiley-VCH. (c) Free energy profile for NRR on defect-rich MoS2 basal plane. (Reprinted with permission from Ref. [92]. Copyright 2018, Wiley-VCH. (d) Optimized structures of MoS2 and MoS2/C3N4 and their potential NRR active sites. (e) Free energy diagrams for NRR on Mo1 and Mo1h sites. Reprinted with permission from Ref. [94]. Copyright 2020, American Chemical Society. S L-edge (f), C K-edge (g), and N K-edge (h) XANES spectra of CoS/NS-G, CoS2/NS-G, and NS-G. Reprinted with permission from Ref. [95]. Copyright 2019, Proceedings of the National Academy of Sciences.
Fig. 6. Contact angles for Fe3P/CP (a) and C18@Fe3P/CP (b). (c) NH3-production performance of C18@Fe3P/CP and Fe3P/CP. Reprinted with permission from Ref. [122]. Copyright 2021, Springer Nature. (d) Charge density difference of C18-thiol decorated CoP(211). (e) Comparison of electrostatic potentials of the clean and C18-thiol decorated CoP(211). (f) Performance comparison. Reprinted with permission from Ref. [123]. Copyright 2021, Royal Society of Chemistry.
Fig. 8. (a) ΔG comparison of the potential-determining step between NORR, NRR, and HER. (b) A two-dimensional activity map for ammonia production. (c) Free-energy diagrams for HER and NORR on the Cu(111) surface. Reprinted with permission from Ref. [153]. Copyright 2020, Wiley-VCH.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | PNO (%) | Ref. |
---|---|---|---|---|---|
a-B2.6C@TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 3678.6 µg h-1 cm-2 | 87.6 | 10 | [ |
Cu foam | H-cell, 0.25 mol L-1 Li2SO4 | 517.1 µmol h-1 cm-2 | 93.5 | 100 | [ |
NiO/TM | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 2130 µg h-1 cm-2 | 90 | 10 | [ |
MoS2/GF | H-cell, 0.1 mol L-1 HCl with 0.5 mmol L-1 FeII-SB | 99.6 µmol h-1 cm-2 | 76.6 | 10 | [ |
Fe2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 78.02 µmol h-1 cm-2 | 86.73 | 10 | [ |
Cu nanoparticle | Flow-cell, 0.1 mol L-1 NaOH with 0.9 mol L-1 NaClO4 | 1806 µmol h-1 cm-2 | 66 | — | [ |
Bi NDs | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1194 µg h-1 mgcat.-1 | 89.2 | 10 | [ |
Bi@C | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1592.5 µg h-1 mgcat.-1 | 93 | 10 | [ |
MnO2‒x NA | H-cell, 0.2 mol L-1 Na2SO4 | 27.51 × 10-10 mol s-1 cm-2 | 82.8 | — | [ |
TiO2‒x/TP | H-cell, 0.2 mol L-1 PBS | 460.1 μg h-1 cm-2 | 92.5 | 10 | [ |
Ni2P/CP | H-cell, 0.1 mol L-1 HCl | 33.47 µmol h-1 cm-2 | 76.9 | 10 | [ |
CoP/TM | H-cell, 0.2 mol L-1 Na2SO4 | 47.22 µmol h-1 cm-2 | 88.3 | 10 | [ |
FeP/CC | H-cell, 0.2 mol L-1 PBS | 85.62 µmol h-1 cm-2 | 88.49 | 10 | [ |
Fe1/MoS2‒x | H-cell, 0.5 mol L-1 Na2SO4 | 288.2 μmol h-1 cm-1 | 82.5 | 99.99 | [ |
Co1/MoS2 | H-cell, 0.5 mol L-1 Na2SO4 | 217.6 μmol h-1 cm-1 | 87.7 | 99.99 | [ |
CoS1‒x/CP | H-cell, 0.2 mol L-1 Na2SO4 | 44.67 µmol h-1 cm-2 | 53.62 | — | [ |
HCNF/CP | H-cell, 0.2 mol L-1 Na2SO4 | 22.35 µmol h-1 cm-2 | 88.33 | 10 | [ |
g-C3N4 nanosheets | H-cell, 0.1 mol L-1 PBS | 30.7 µmol h-1 cm-2 | 45.6 | 20 | [ |
Table 2 Comparison of NH3-production performance of some recent NORR electrocatalysts.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | PNO (%) | Ref. |
---|---|---|---|---|---|
a-B2.6C@TiO2/Ti | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 3678.6 µg h-1 cm-2 | 87.6 | 10 | [ |
Cu foam | H-cell, 0.25 mol L-1 Li2SO4 | 517.1 µmol h-1 cm-2 | 93.5 | 100 | [ |
NiO/TM | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 2130 µg h-1 cm-2 | 90 | 10 | [ |
MoS2/GF | H-cell, 0.1 mol L-1 HCl with 0.5 mmol L-1 FeII-SB | 99.6 µmol h-1 cm-2 | 76.6 | 10 | [ |
Fe2O3/CP | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 78.02 µmol h-1 cm-2 | 86.73 | 10 | [ |
Cu nanoparticle | Flow-cell, 0.1 mol L-1 NaOH with 0.9 mol L-1 NaClO4 | 1806 µmol h-1 cm-2 | 66 | — | [ |
Bi NDs | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1194 µg h-1 mgcat.-1 | 89.2 | 10 | [ |
Bi@C | H-cell, 0.1 mol L-1 Na2SO4 with 0.5 mmol L-1 Fe2+-EDTA | 1592.5 µg h-1 mgcat.-1 | 93 | 10 | [ |
MnO2‒x NA | H-cell, 0.2 mol L-1 Na2SO4 | 27.51 × 10-10 mol s-1 cm-2 | 82.8 | — | [ |
TiO2‒x/TP | H-cell, 0.2 mol L-1 PBS | 460.1 μg h-1 cm-2 | 92.5 | 10 | [ |
Ni2P/CP | H-cell, 0.1 mol L-1 HCl | 33.47 µmol h-1 cm-2 | 76.9 | 10 | [ |
CoP/TM | H-cell, 0.2 mol L-1 Na2SO4 | 47.22 µmol h-1 cm-2 | 88.3 | 10 | [ |
FeP/CC | H-cell, 0.2 mol L-1 PBS | 85.62 µmol h-1 cm-2 | 88.49 | 10 | [ |
Fe1/MoS2‒x | H-cell, 0.5 mol L-1 Na2SO4 | 288.2 μmol h-1 cm-1 | 82.5 | 99.99 | [ |
Co1/MoS2 | H-cell, 0.5 mol L-1 Na2SO4 | 217.6 μmol h-1 cm-1 | 87.7 | 99.99 | [ |
CoS1‒x/CP | H-cell, 0.2 mol L-1 Na2SO4 | 44.67 µmol h-1 cm-2 | 53.62 | — | [ |
HCNF/CP | H-cell, 0.2 mol L-1 Na2SO4 | 22.35 µmol h-1 cm-2 | 88.33 | 10 | [ |
g-C3N4 nanosheets | H-cell, 0.1 mol L-1 PBS | 30.7 µmol h-1 cm-2 | 45.6 | 20 | [ |
Fig. 9. NH3-formation rate (a) and FENH3 (b) of various Cu and Pt electrodes. (c) Stability of Cu foam. (d) Comparison of XRD profile and SEM images for the as-prepared Cu foam and those after stability test. (e) Fourier transforms of EXAFS signals for the standard Cu foil, as-prepared Cu foam, and the Cu foam after stability test. (f) X-ray photoelectron spectroscopy for the as-prepared Cu foam and those after stability test. Reprinted with permission from Ref. [153]. Copyright 2020, Wiley-VCH.
Fig. 10. (a) Schematic diagram showing NO capture by EFeMC present in the electrolyte and its electrochemical reduction to NH3. (b) Economic estimation model. Reprinted with permission from Ref. [168]. Copyright 2020, American Chemical Society.
Fig. 11. (a) Schematic illustration of electrochemical NORR in the GDE-based system. (b) FENH3 in the GDE cell (using 1% NO) and the aqueous-phase cell (using 99.9% NO). Reprinted with permission from Ref. [170]. Copyright 2022, American Chemical Society. (c) Product selectivity of various catalysts in NO electroreduction. (d) Product selectivity of various catalysts in N2O electroreduction. (e,f) Schematic illustrations of the effect of high and low NO coverage on the metal surface for product selectivity. Reprinted with permission from Ref. [171]. Copyright 2022, American Chemical Society.
Fig. 12. (a) SEM images of Bi NDs. (b) NH3 yields and FEs of major reduction products on Bi NDs/CP. (c) Comparison of peak power densities and NH3 yields. Reprinted with permission from Ref. [173]. Copyright 2022, Elsevier. (d) SEM image of Bi@C. (e) Polarization curves for Bi@C/CP and Bi/CP. (f) NH3 yields and FEs of major reduction products on Bi@C/CP. Reprinted with permission from Ref. [174]. Copyright 2022, Springer Nature.
Fig. 13. (a) Yields and FEs of NH3 and H2 on Fe2O3/CP. (b) COHP and ICOHP. Reprinted with permission from Ref. [165]. Copyright 2022, Royal Society of Chemistry. (c) Free energy profiles of NORR on MnO2(211) and MnO2?x(211). (f) Performance comparison. Reprinted with permission from Ref. [175]. Copyright 2021, Elsevier. (e) Performance comparison. (f) Free energy profiles of NORR on TiO2(101) and TiO2?x(101). Reprinted with permission from Ref. [176]. Copyright 2023, Wiley-VCH.
Fig. 14. (a) Product distribution for MoS2/GF. (b) Pt and MoS2 were compared on the RRDE electrode. (c) Free energy landscape for NORR on MoS2(101). Reprinted with permission from Ref. [164]. Copyright 2021, Wiley-VCH. (d) NH3 yields and FEs of Co1/MoS2 and MoS2. (e) Co K-edge XANES. (f) EXAFS spectra. (g) EXAFS fitting curve of Co1/MoS2. (h) Free energy profiles of NORR on MoS2 and Co1/MoS2. Reprinted with permission from Ref. [182]. Copyright 2022, Elsevier. (i) Charge density difference of the CoS1?x(100) facet. (j) Performance comparison. Reprinted with permission from Ref. [183]. Copyright 2022, American Chemical Society.
Fig. 15. (a) Performance comparison. Reprinted with permission from Ref. [184]. Copyright 2022, Elsevier. (b) Photographs and water contact angles of the distinct electrodes and illustrations of underwater UW, UWC, and UC states. (c) Schematic illustration of the gas-liquid-solid triphase interface electrocatalysis with UWC state. Reprinted with permission from Ref. [185]. Copyright 2023, Elsevier. (d) Performance comparison. (e) Free energy diagram for NORR on a-B2.6C@TiO2(101) and (inset of f) corresponding atomic structures of intermediates. Reprinted with permission from Ref. [20]. Copyright 2022, Wiley-VCH.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|
CuO NWAs | H-cell, 0.5 mol L‒1 Na2SO4 + 200 ppm NO3- | 0.2449 mmol h-1 cm-2 | 95.8 | -0.85 | [ |
Co@TiO2/TP | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 800.0 μmol h-1 cm-2 | 96.7 | -1.0, -0.7 | [ |
Co2AlO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 7.9 mg h-1 cm-2 | 92.6 | -0.9, -0.7 | [ |
Co@CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.60 mmol h-1 cm-2 | 93.4 | -0.8 | [ |
Co-NCNT/CP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 5996 μg h-1 cm-2 | 92 | -0.6 | [ |
Co@NC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 758.0 μmol h-1 mgcat.-1 | 96.5 | -0.7, -0.5 | [ |
PP-Co | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1.1 mmol h-1 mgcat.-1 | 90.1 | -0.6 | [ |
Co@JDC/GF | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 2.8 ± 0.1 mol h-1 gCo-1 | 96.9 ± 2.1 | -1.0 | [ |
Vo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 12157 μg h-1 cm-2 | 96.8 | -0.5 | [ |
vCo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 517.5 μmol h-1 cm-2 | 97.2 | -0.6, -0.4 | [ |
Fe-Co3O4 NA/TM | H-cell, 0.1 mol L‒1 PBS + 50 mmol L‒1 NO3- | 0.624 mg h-1 mgcat.-1 | 95.5 | -0.7 | [ |
Co3O4@TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 875 μmol h-1 cm-2 | 93.1 | -0.9, -0.7 | [ |
CoO@NCNT | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 9041.6 ± 370.7 μg h-1 cm-2 | 93.8 ± 1.5 | -0.6 | [ |
CoP NA/TM | H-cell, 0.1 mol L‒1 PBS + 500 ppm NO2- | 2260.7 ± 51.5 μg h-1 cm-2 | 90.0 ± 2.3 | -0.2 | [ |
CoP NAs/CFC | H-cell, 1.0 mol L‒1 NaOH + 1.0 mol L‒1 NO3- | 9.56 mol h-1 m-2 | ~100 | -0.3 | [ |
CoP-CNS | H-cell, 1.0 mol L‒1 OH- + 1.0 mol L‒1 NO3- | 8.47 mmol h-1 cm-2 | 88.6 | -1.03 | [ |
CoP/TiO2@TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 499.8 μmol h-1 cm-2 | 95.0 | -0.5, -0.3 | [ |
NiCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 973.2 µmol h-1 cm-2 | 99.0 | -0.6, -0.3 | [ |
ZnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 634.74 µmol h-1 cm-2 | 98.33 | -0.8, -0.6 | [ |
FeCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 20 mmol L‒1 NO3- | 4988 μg h-1 cm-2 | 95.9 | -0.5 | [ |
MnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.67 mmol h-1 cm-2 | 97.1 | -0.7, -0.6 | [ |
Mn2CoO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 11.19 mg h-1 cm-2 | 98.6 | -1.0, -0.6 | [ |
CoB@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 400 ppm NO2- | 293 μmol h-1 cm-2 | 95.2 | -0.7 | [ |
Co-P/TP | H-cell, 0.2 mol L‒1 Na2SO4 + 200 ppm NO3- | 416.06 ± 7.2 μg h-1 cm-2 | 93.6 ± 3.3 | -0.6, -0.3 | [ |
CoBx | H-cell, 0.1 mol L‒1 KOH + 0.05 mol L‒1 NO3- | 0.787 ± 0.028 mmol h-1 cm-2 | 94.0 ± 1.67 | -1.3, -0.9 | [ |
Co2B@Co3O4 | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 8.57 mg h-1 cm-2 | 97.0 | -1.0, -0.7 | [ |
Cu@JDC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 523.5 µmol h-1 mgcat.-1 | 93.2 | -0.6 | [ |
Cu@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 760.5 µmol h-1 cm-1 | 95.3 | -0.8, -0.6 | [ |
Cu3P NA/CF | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 1626.6 ± 36.1 μg h-1 cm-2 | 91.2 ± 2.5 | -0.5 | [ |
CF@Cu2O | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 7510.73 µg h-1 cm-1 | 94.21 | -0.6 | [ |
Cu-N-C SAC | H-cell, 0.1 mol L‒1 KOH + 0.1 mol L‒1 NO3- | 4.5 mg h-1 cm-1 | 84.7 | -1.0 | [ |
Fe3O4/SS | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 10145 μg h-1 cm-2 | 91.5 | -0.5 | [ |
FeOOH nanorod | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 2419 μg h-1 cm-2 | 92 | -0.8, -0.5 | [ |
FeOOH NTA/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 11937 μg h-1 cm-2 | 94.7 | -1.1, -1.0 | [ |
FeS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 860.3 μmol h-1 cm-2 | 97.0 | -0.7, -0.4 | [ |
Fe2TiO5 nanofibers | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 0.73 mmol h-1 mgcat.-1 | 87.6 | -1.0 | [ |
NFP | H-cell, 0.5 mol L‒1 Na2SO4 + 0.05 mol L‒1 NO3- | 0.0564 mmol h-1 mg-1 | 99.23 | -1.2 | [ |
Ni2P/NF | H-cell, 0.1 mol L‒1 PBS + 200 ppm NO2- | 2692.2 ± 92.1 μg h-1 cm-2 | 90.2 ± 3.0 | -0.3 | [ |
Ni@JBC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 4117.3 µg h-1 mgcat.-1 | 83.41 | -0.5 | [ |
NiS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 591.9 µmol h-1 cm-1 | 92.1 | -0.6, -0.5 | [ |
TiO2‒x/CP | H-cell, 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 0.045 mmol h-1 mg-1 | 85.0 | -1.6 V vs. SCE | [ |
TiO2‒x NBA/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 7898 µg h-1 cm-1 | 92.7 | -0.7 | [ |
ITO@TiO2/TP | H-cell, 0.5 mol L‒1 LiClO4 + 0.1 mol L‒1 NO2- | 411.3 µmol h-1 cm-1 | 82.6 | -0.5 | [ |
Anatase TiO2‒x | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 12230.1 ± 406.9 μg h-1 cm-2 | 91.1 ± 5.5 | -0.8 | [ |
Fe-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 940.17 μmol h-1 cm-2 | 95.93 | -0.9, -0.5 | [ |
Co-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1127 μmol h-1 cm-2 | 98.2 | -0.9, -0.5 | [ |
V-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 540.8 µmol h-1 cm-1 | 93.2 | -0.7, -0.6 | [ |
Ni-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 380.27 µmol h-1 cm-1 | 94.89 | -0.5 | [ |
P-TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 560.8 µmol h-1 cm-1 | 90.6 | -0.6 | [ |
Table 3 Comparison of the NH3-production performance of representative NtrRR electrocatalysts.
Catalyst | Cell type, electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|
CuO NWAs | H-cell, 0.5 mol L‒1 Na2SO4 + 200 ppm NO3- | 0.2449 mmol h-1 cm-2 | 95.8 | -0.85 | [ |
Co@TiO2/TP | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 800.0 μmol h-1 cm-2 | 96.7 | -1.0, -0.7 | [ |
Co2AlO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 7.9 mg h-1 cm-2 | 92.6 | -0.9, -0.7 | [ |
Co@CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.60 mmol h-1 cm-2 | 93.4 | -0.8 | [ |
Co-NCNT/CP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 5996 μg h-1 cm-2 | 92 | -0.6 | [ |
Co@NC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 758.0 μmol h-1 mgcat.-1 | 96.5 | -0.7, -0.5 | [ |
PP-Co | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1.1 mmol h-1 mgcat.-1 | 90.1 | -0.6 | [ |
Co@JDC/GF | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 2.8 ± 0.1 mol h-1 gCo-1 | 96.9 ± 2.1 | -1.0 | [ |
Vo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 12157 μg h-1 cm-2 | 96.8 | -0.5 | [ |
vCo-Co3O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 517.5 μmol h-1 cm-2 | 97.2 | -0.6, -0.4 | [ |
Fe-Co3O4 NA/TM | H-cell, 0.1 mol L‒1 PBS + 50 mmol L‒1 NO3- | 0.624 mg h-1 mgcat.-1 | 95.5 | -0.7 | [ |
Co3O4@TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 875 μmol h-1 cm-2 | 93.1 | -0.9, -0.7 | [ |
CoO@NCNT | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 9041.6 ± 370.7 μg h-1 cm-2 | 93.8 ± 1.5 | -0.6 | [ |
CoP NA/TM | H-cell, 0.1 mol L‒1 PBS + 500 ppm NO2- | 2260.7 ± 51.5 μg h-1 cm-2 | 90.0 ± 2.3 | -0.2 | [ |
CoP NAs/CFC | H-cell, 1.0 mol L‒1 NaOH + 1.0 mol L‒1 NO3- | 9.56 mol h-1 m-2 | ~100 | -0.3 | [ |
CoP-CNS | H-cell, 1.0 mol L‒1 OH- + 1.0 mol L‒1 NO3- | 8.47 mmol h-1 cm-2 | 88.6 | -1.03 | [ |
CoP/TiO2@TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 499.8 μmol h-1 cm-2 | 95.0 | -0.5, -0.3 | [ |
NiCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 973.2 µmol h-1 cm-2 | 99.0 | -0.6, -0.3 | [ |
ZnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 634.74 µmol h-1 cm-2 | 98.33 | -0.8, -0.6 | [ |
FeCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 20 mmol L‒1 NO3- | 4988 μg h-1 cm-2 | 95.9 | -0.5 | [ |
MnCo2O4/CC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 0.67 mmol h-1 cm-2 | 97.1 | -0.7, -0.6 | [ |
Mn2CoO4/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 11.19 mg h-1 cm-2 | 98.6 | -1.0, -0.6 | [ |
CoB@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 400 ppm NO2- | 293 μmol h-1 cm-2 | 95.2 | -0.7 | [ |
Co-P/TP | H-cell, 0.2 mol L‒1 Na2SO4 + 200 ppm NO3- | 416.06 ± 7.2 μg h-1 cm-2 | 93.6 ± 3.3 | -0.6, -0.3 | [ |
CoBx | H-cell, 0.1 mol L‒1 KOH + 0.05 mol L‒1 NO3- | 0.787 ± 0.028 mmol h-1 cm-2 | 94.0 ± 1.67 | -1.3, -0.9 | [ |
Co2B@Co3O4 | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 8.57 mg h-1 cm-2 | 97.0 | -1.0, -0.7 | [ |
Cu@JDC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 523.5 µmol h-1 mgcat.-1 | 93.2 | -0.6 | [ |
Cu@TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 760.5 µmol h-1 cm-1 | 95.3 | -0.8, -0.6 | [ |
Cu3P NA/CF | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 1626.6 ± 36.1 μg h-1 cm-2 | 91.2 ± 2.5 | -0.5 | [ |
CF@Cu2O | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 7510.73 µg h-1 cm-1 | 94.21 | -0.6 | [ |
Cu-N-C SAC | H-cell, 0.1 mol L‒1 KOH + 0.1 mol L‒1 NO3- | 4.5 mg h-1 cm-1 | 84.7 | -1.0 | [ |
Fe3O4/SS | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 10145 μg h-1 cm-2 | 91.5 | -0.5 | [ |
FeOOH nanorod | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 2419 μg h-1 cm-2 | 92 | -0.8, -0.5 | [ |
FeOOH NTA/CC | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO2- | 11937 μg h-1 cm-2 | 94.7 | -1.1, -1.0 | [ |
FeS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 860.3 μmol h-1 cm-2 | 97.0 | -0.7, -0.4 | [ |
Fe2TiO5 nanofibers | H-cell, 0.1 mol L‒1 PBS + 0.1 mol L‒1 NO3- | 0.73 mmol h-1 mgcat.-1 | 87.6 | -1.0 | [ |
NFP | H-cell, 0.5 mol L‒1 Na2SO4 + 0.05 mol L‒1 NO3- | 0.0564 mmol h-1 mg-1 | 99.23 | -1.2 | [ |
Ni2P/NF | H-cell, 0.1 mol L‒1 PBS + 200 ppm NO2- | 2692.2 ± 92.1 μg h-1 cm-2 | 90.2 ± 3.0 | -0.3 | [ |
Ni@JBC | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 4117.3 µg h-1 mgcat.-1 | 83.41 | -0.5 | [ |
NiS2@TiO2 | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 591.9 µmol h-1 cm-1 | 92.1 | -0.6, -0.5 | [ |
TiO2‒x/CP | H-cell, 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 0.045 mmol h-1 mg-1 | 85.0 | -1.6 V vs. SCE | [ |
TiO2‒x NBA/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 7898 µg h-1 cm-1 | 92.7 | -0.7 | [ |
ITO@TiO2/TP | H-cell, 0.5 mol L‒1 LiClO4 + 0.1 mol L‒1 NO2- | 411.3 µmol h-1 cm-1 | 82.6 | -0.5 | [ |
Anatase TiO2‒x | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 12230.1 ± 406.9 μg h-1 cm-2 | 91.1 ± 5.5 | -0.8 | [ |
Fe-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 940.17 μmol h-1 cm-2 | 95.93 | -0.9, -0.5 | [ |
Co-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO3- | 1127 μmol h-1 cm-2 | 98.2 | -0.9, -0.5 | [ |
V-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 540.8 µmol h-1 cm-1 | 93.2 | -0.7, -0.6 | [ |
Ni-TiO2/TP | H-cell, 0.1 mol L‒1 NaOH + 0.1 mol L‒1 NO2- | 380.27 µmol h-1 cm-1 | 94.89 | -0.5 | [ |
P-TiO2/TP | H-cell, 0.1 mol L‒1 Na2SO4 + 0.1 mol L‒1 NO2- | 560.8 µmol h-1 cm-1 | 90.6 | -0.6 | [ |
Fig. 17. (a) DEMS measurements of NITRR over Cu/Ni-NC. (b) In situ ATR-SEIRAS spectra of Cu/Ni-NC. Reprinted with permission from Ref. [195]. Copyright 2023, Wiley-VCH. (c) In situ Raman spectra in the range of 900-1800 cm-1 on Fe2O3 NRs/CC. Reprinted with permission from Ref. [196]. Copyright 2022, American Chemical Society. (d) Electrochemical in situ Raman spectroscopy of CuO NWAs. Reprinted with permission from Ref. [197]. Copyright 2020, Wiley-VCH.
Fig. 18. (a) Electrochemical in situ Cu K-edge XAS spectra and (b) Fourier-transformed Cu K-edge XAS spectra for Cu50Ni50 at given potentials. (c) Electrochemical in situ Ni K-edge XAS spectra and (d) Fourier-transformed Ni K-edge XAS spectra for Cu50Ni50 at given potentials. (e) UPS spectra and d-band center positions of pure Cu and CuNi alloys. Reprinted with permission from Ref. [198]. Copyright 2020, American Chemical Society.
Fig. 19. (a) The structures of all intermediates involved in NO3- reduction on Ru@C3N4/Cu and C3N4/Cu. (b) Gibbs free energy diagram of NO3-RR over the Ru@C3N4/Cu and C3N4/Cu. (c) Gibbs free energy diagram of HER over the Ru@C3N4/Cu and C3N4/Cu. The structures of adsorption configurations of *H on Ru@C3N4/Cu (d) and C3N4/Cu (e). Reprinted with permission from Ref. [200]. Copyright 2023, Wiley-VCH.
Fig. 20. (a) TEM image of Co-NCNT. Reprinted with permission from Ref. [209]. Copyright 2022, Royal Society of Chemistry. (b) SEM image of PP-Co. Reprinted with permission from Ref. [211]. Copyright 2022, Royal Society of Chemistry. (c) SEM image of Co@JDC. (d) Polarization curves of Co@JDC/GF. (e) NO2-RR performance of Co@JDC/GF. (f) Performance of the Co@JDC/GF-based two-electrode cell. (g) Free-energy diagrams of NO2-RR and (h) HER on the Co(111), Co(200), and Co(220) planes. Reprinted with permission from Ref. [212]. Copyright 2022, Royal Society of Chemistry.
Fig. 21. (a) SEM image of vCo-Co3O4/CC. (b) TEM image of vCo-Co3O4. Polarization curves (c) and NH3-production performance (d) of vCo-Co3O4/CC and Co3O4/CC. (e) Free-energy diagrams for NO3-RR on vCo-Co3O4. Reprinted with permission from Ref. [215]. Copyright 2022, American Chemical Society. (f) SEM image of CoO@NCNT. (g) TEM image of CoO@NCNT. (h) Charge density difference of the adsorption of NO3- by 3D and 2D views. (i) Bader charges of the Co active site and N atom of NO3-. (j) Free energies of NO3-RR on the CoO surface. Reprinted with permission from Ref. [219]. Copyright 2022, Royal Society of Chemistry.
Fig. 22. (a) SEM images of CoP NA/TM. (b) NH3-generation performance of CoP NA/TM for NO2-RR. Reprinted with permission from Ref. [221]. Copyright 2022, Springer Nature. (c) Operando XANES of Co K-edge of CoP NAs/CFC. (d) Mechanism of NO3-RR on CoP NAs/CFC. (e) Operando XANES and (f) LCF results of Co K-edge of Co NAs/CFC. (g) Gibbs free energy diagram of NO3-RR on CoP. Reprinted with permission from Ref. [222]. Copyright 2022, Royal Society of Chemistry. (h) Polarization curves and (i) NH3-generation performance of CoP@TiO2/TP for NO3-RR. Reprinted with permission from Ref. [224]. Copyright 2022, Elsevier.
Fig. 23. (a) Polarization curves of NiCo2O4/CC and Co3O4/CC. (b) NH3-production performance of NiCo2O4/CC. (c) Schematic illustration of NiCo2O4/CC-based Zn-NO3? battery. (d) Discharge polarization and power density plots of NiCo2O4/CC-based Zn-NO3? battery. (e) Free energy diagrams for NO3?RR on the Co3O4(311) and NiCo2O4(311) surfaces. Reprinted with permission from Ref. [225]. Copyright 2022, Wiley-VCH. (f) Polarization curves of ZnCo2O4/CC. (g) Performance comparison. Reprinted with permission from Ref. [226]. Copyright 2022, Elsevier. (h) Charge density difference of Co for Co3O4 and Co2AlO4. (i) Free energy diagrams for NO3?RR on the Co2AlO4(220) and Co3O4(220) surfaces. Reprinted with permission from Ref. [203]. Copyright 2022, Elsevier.
Fig. 24. NH3-production performance of Co-P/TP toward NO3-RR (a) and NO2-RR (b). (c) Concentrations of NO3- and conversion rates. Reprinted with permission from Ref. [232]. Copyright 2021, Royal Society of Chemistry. (d) Fabrication process of CoBx nanoparticles. Polarization curves (e) and NH3 yields (f) of CoBx and Co toward NO3-RR. Reprinted with permission from Ref. [233]. Copyright 2021, Royal Society of Chemistry. (g) Performance comparison. (h) Free energy profile for NO3-RR on Co2B. Reprinted with permission from Ref. [234]. Copyright 2022, American Chemical Society.
Fig. 25. (a) FE of various elements incorporated in PTCDA at -0.4 V. (b) PDOS for *NO3 on Cu-PTCDA. (c) HAADF-STEM and corresponding SAED images of Cu-PTCDA. (d) FT-EXAFS spectra of Cu-PTCDA and Cu foil. (e) NH3 FE of Cu-PTCDA toward NO3-RR. Reprinted with permission from Ref. [238]. Copyright 2020, Springer Nature.
Fig. 26. (a) PDOS of Cu2O(111) with OVs before and after NO2- adsorption. (b) Charge density difference for NO2--adsorbed configuration of Cu2O(111) with OVs. (c) Free energy diagram of NO2-RR on the Cu2O(111) with OVs. Reprinted with permission from Ref. [244]. Copyright 2022, Royal Society of Chemistry. (d) In situ XANES spectra of Cu-N4 at each given potential. (e) Linear combination fitting result of Cu K-edge XANES spectra and (f) corresponding Cu K-edge FT-EXAFS spectra at different potentials. Reprinted with permission from Ref. [245]. Copyright 2022, American Chemical Society.
Fig. 27. (a) SEM images of Fe3O4/SS. (b) NH3-production performance of Fe3O4/SS and SS. Reprinted with permission from Ref. [249]. Copyright 2021, Springer Nature. (c) SEM images of FeOOH NTA/CC. (d) NH3-production performance of FeOOH NTA/CC. Reprinted with permission from Ref. [251]. Copyright 2022, Royal Society of Chemistry. (e) SEM image of FeS2@TiO2/TP. (f) Performance comparison. Reprinted with permission from Ref. [252]. Copyright 2022, Royal Society of Chemistry.
Fig. 28. (a) Polarization curves of different electrodes for NO3-RR. (b) Performance comparison. (c) Calculated density of states (DOS) of Fe2TiO5 and Fe2TiO5-VO. (d) Calculated band structures of Fe2TiO5 and Fe2TiO5-VO. (e) Free energies of Fe2TiO5 (red line) and Fe2TiO5-VO (green line). Reprinted with permission from Ref. [253]. Copyright 2022, Wiley-VCH.
Fig. 29. (a) Performance comparison. (b) Surface energy diagrams and free energy profiles. Reprinted with permission from Ref. [254]. Copyright 2021, American Chemical Society. (c) Polarization curves of Ni2P/NF. (d) NO2-RR performance of Ni2P/NF. Reprinted with permission from Ref. [255]. Copyright 2021, Elsevier.
Fig. 30. (a) Comparison of NO3-RR performance of TiO2?x and TiO2. (b) DEMS measurements of TiO2-x for electrocatalytic reduction of NO3-. (c) Calculated free energy changes of NO3-RR on the TiO2(101) surface with two oxygen vacancies. Reprinted with permission from Ref. [258]. Copyright 2020, American Chemical Society. (d) Free energy profiles for NO2-RR on V-doped TiO2 and TiO2. Reprinted with permission from Ref. [264]. Copyright 2022, Elsevier.
|
[1] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[2] | Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia [J]. Chinese Journal of Catalysis, 2023, 52(9): 50-78. |
[3] | Yong Liu, Xiaoli Zhao, Chang Long, Xiaoyan Wang, Bangwei Deng, Kanglu Li, Yanjuan Sun, Fan Dong. In situ constructed dynamic Cu/Ce(OH)x interface for nitrate reduction to ammonia with high activity, selectivity and stability [J]. Chinese Journal of Catalysis, 2023, 52(9): 196-206. |
[4] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[5] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[6] | Jingjing Li, Fengwei Zhang, Xinyu Zhan, Hefang Guo, Han Zhang, Wen-Yan Zan, Zhenyu Sun, Xian-Ming Zhang. Precise design of nickel phthalocyanine molecular structure: Optimizing electronic and spatial effects for remarkable electrocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 117-126. |
[7] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[8] | Wenjing Zhang, Jing Li, Zidong Wei. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures [J]. Chinese Journal of Catalysis, 2023, 48(5): 15-31. |
[9] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[10] | Zexing Wu, Yuxiao Gao, Zixuan Wang, Weiping Xiao, Xinping Wang, Bin Li, Zhenjiang Li, Xiaobin Liu, Tianyi Ma, Lei Wang. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery [J]. Chinese Journal of Catalysis, 2023, 46(3): 36-47. |
[11] | Xiaoni Liu, Xiaobin Liu, Caixia Li, Bo Yang, Lei Wang. Defect engineering of electrocatalysts for metal-based battery [J]. Chinese Journal of Catalysis, 2023, 45(2): 27-87. |
[12] | Yuxuan Lu, Liu Yang, Yimin Jiang, Zhenran Yuan, Shuangyin Wang, Yuqin Zou. Engineering a localized electrostatic environment to enhance hydroxyl activating for electrocatalytic biomass conversion [J]. Chinese Journal of Catalysis, 2023, 53(10): 153-160. |
[13] | Xianbiao Fu. Some thoughts about the electrochemical nitrate reduction reaction [J]. Chinese Journal of Catalysis, 2023, 53(10): 8-12. |
[14] | Ya Li, Zhenkang Wang, Haoqing Ji, Lifang Zhang, Tao Qian, Chenglin Yan, Jianmei Lu. Excluding false positives: A perspective toward credible ammonia quantification in nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 44(1): 50-66. |
[15] | Yuyan Qiao, Yanqiu Pan, Jiangwei Zhang, Bin Wang, Tingting Wu, Wenjun Fan, Yucheng Cao, Rashid Mehmood, Fei Zhang, Fuxiang Zhang. Multiple carbon interface engineering to boost oxygen evolution of NiFe nanocomposite electrocatalyst [J]. Chinese Journal of Catalysis, 2022, 43(9): 2354-2362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||