Chinese Journal of Catalysis ›› 2023, Vol. 51: 55-65.DOI: 10.1016/S1872-2067(23)64481-X
• Articles • Previous Articles Next Articles
Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang(), Yi-Jun Xu()
Received:
2023-04-23
Accepted:
2023-06-29
Online:
2023-08-18
Published:
2023-09-11
Contact:
*E-mail: zrtang@fzu.edu.cn (Z.-R. Tang), yjxu@fzu.edu.cn (Y.-J. Xu).
Supported by:
Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites[J]. Chinese Journal of Catalysis, 2023, 51: 55-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64481-X
Fig. 1. (a) Systematic illustration of the synthetic procedure of the PdS decorated ZIS composites. (b) SEM image of ZIS. SEM (c), TEM (d), HRTEM (e) and high angle annular dark field (HAADF)-scanning TEM images and the element mapping results (f) of PdS-ZIS.
Fig. 2. XPS spectra of Zn 2p (a), In 3d (b) and S 2p (c) of ZIS and PdS-ZIS. (d) Pd 3d of PdS-ZIS. XRD patterns (e) and DRS spectra (f) of ZIS and PdS-ZIS composites containing different weight ratios of PdS.
Fig. 3. (a) Graphical representation of the photocatalytic selective dehydrogenation coupling of 4-MTP into 4-MPD and H2 evolution. (b) Photocatalytic activities of blank ZIS and x%PdS-ZIS (x = 0.5, 1, 3, 5). (c) Time-yield plots over 3%PdS-ZIS. (d) DRS spectrum of 3%PdS-ZIS and AQY of 4-MPD under different monochromatic lights. (e) Recycle tests over 3%PdS-ZIS. Reaction conditions of photocatalytic activity tests and recycle tests: 10 mg catalysts, 0.1 mmol 4-MTP, 10 mL MeCN, visible light, irradiation for 8 h.
Entry | Substrate | Yield of disulfide b (%) | Selectivity of disulfide c (%) | Disulfide generation rate (μmol/gZIS/h) | H2 production rate (μmol/gZIS/h) | Carbon balance d (%) | e-/h+ e |
---|---|---|---|---|---|---|---|
1 | 4-NH2C6H4SH | 98.5 | 99.4 | 615.7 | 607.1 | 99.6 | 0.99 |
2 | 4-NO2C6H4SH | 97.3 | 99.7 | 608.2 | 582.3 | 100 | 0.96 |
3 | 4-CH3C6H4SH | 80.2 | 99.5 | 501.2 | 493.7 | 99.5 | 0.99 |
4 | 4-ClC6H4SH | 59.8 | 99.6 | 373.5 | 353.7 | 100 | 0.95 |
5 | 4-(CH3)3CC6H4SH | 54.4 | 99.5 | 339.7 | 334.5 | 99.5 | 0.98 |
6 | 4-CF3C6H4SH | 48.4 | 99.4 | 302.8 | 276.3 | 99.4 | 0.91 |
7 | 4-FC6H4SH | 51.9 | 99.8 | 324.3 | 293.4 | 99.8 | 0.90 |
8 | 4-CH3CH2C6H4SH | 52.8 | 99.1 | 330.3 | 327.1 | 99.2 | 0.99 |
9 | CH3CH2SH | 98.5 | 99.9 | 615.5 | 607.1 | 99.9 | 0.99 |
10 | HOOCCH2SH | 96.0 | 99.8 | 600.3 | 594.7 | 99.8 | 0.99 |
Table 1 Photocatalytic dehydrogenation coupling of thiols with different substituents into corresponding disulfides and H2 evolution a.
Entry | Substrate | Yield of disulfide b (%) | Selectivity of disulfide c (%) | Disulfide generation rate (μmol/gZIS/h) | H2 production rate (μmol/gZIS/h) | Carbon balance d (%) | e-/h+ e |
---|---|---|---|---|---|---|---|
1 | 4-NH2C6H4SH | 98.5 | 99.4 | 615.7 | 607.1 | 99.6 | 0.99 |
2 | 4-NO2C6H4SH | 97.3 | 99.7 | 608.2 | 582.3 | 100 | 0.96 |
3 | 4-CH3C6H4SH | 80.2 | 99.5 | 501.2 | 493.7 | 99.5 | 0.99 |
4 | 4-ClC6H4SH | 59.8 | 99.6 | 373.5 | 353.7 | 100 | 0.95 |
5 | 4-(CH3)3CC6H4SH | 54.4 | 99.5 | 339.7 | 334.5 | 99.5 | 0.98 |
6 | 4-CF3C6H4SH | 48.4 | 99.4 | 302.8 | 276.3 | 99.4 | 0.91 |
7 | 4-FC6H4SH | 51.9 | 99.8 | 324.3 | 293.4 | 99.8 | 0.90 |
8 | 4-CH3CH2C6H4SH | 52.8 | 99.1 | 330.3 | 327.1 | 99.2 | 0.99 |
9 | CH3CH2SH | 98.5 | 99.9 | 615.5 | 607.1 | 99.9 | 0.99 |
10 | HOOCCH2SH | 96.0 | 99.8 | 600.3 | 594.7 | 99.8 | 0.99 |
Fig. 4. Transient photocurrent response plots (a), EIS Nyquist plots (b), polarization curves (c), electron lifetime (d), PL spectra (e) and TRPL decay spectra (f) over ZIS and 3%PdS-ZIS.
Fig. 5. (a) Controlled tests for the photocatalytic coupling of 4-MTP with H2 evolution over 3%PdS-ZIS. Reaction conditions: 10 mg catalysts, 10 mL MeCN, 0.1 mmol 4-MTP, 0.2 mmol quenchers, Ar atmosphere, visible light, 8 h. (b) In-situ FTIR spectra over 3%PdS-ZIS. (c) EPR spectra of blank ZIS and 3%PdS-ZIS using DMPO as the trapping agents (dark and light). (d) Quantitative analysis of EPR spectrum for 3%PdS-ZIS.
Fig. 6. (a) Schematic diagram of the internal electric field formed between ZIS and PdS. (b) Systematic illustration of the photoredox catalyzed mechanism for dehydrogenation coupling of 4-MTP into 4-MPD and H2 evolution over PdS-ZIS photocatalyst (λ > 420 nm).
|
[1] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[2] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[3] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[4] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[5] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[6] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[7] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[8] | Ni Wang, Xue-Peng Zhang, Jinxiu Han, Haitao Lei, Qingxin Zhang, Hang Zhang, Wei Zhang, Ulf-Peter Apfel, Rui Cao. Promoting hydrogen evolution reaction with a sulfonic proton relay [J]. Chinese Journal of Catalysis, 2023, 45(2): 88-94. |
[9] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[10] | Qiyou Wang, Yujie Gong, Yao Tan, Xin Zi, Reza Abazari, Hongmei Li, Chao Cai, Kang Liu, Junwei Fu, Shanyong Chen, Tao Luo, Shiguo Zhang, Wenzhang Li, Yifa Sheng, Jun Liu, Min Liu. Cooperative alkaline hydrogen evolution via inducing local electric field and electron localization [J]. Chinese Journal of Catalysis, 2023, 54(11): 229-237. |
[11] | Chao Wu, Kangle Lv, Xin Li, Qin Li. Dual cocatalysts for photocatalytic hydrogen evolution: Categories, synthesis, and design considerations [J]. Chinese Journal of Catalysis, 2023, 54(11): 137-160. |
[12] | Hui Su, Jing Jiang, Shaojia Song, Bohan An, Ning Li, Yangqin Gao, Lei Ge. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting [J]. Chinese Journal of Catalysis, 2023, 44(1): 7-49. |
[13] | Chuqiang Huang, Jianqing Zhou, Dingshuo Duan, Qiancheng Zhou, Jieming Wang, Bowen Peng, Luo Yu, Ying Yu. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism [J]. Chinese Journal of Catalysis, 2022, 43(8): 2091-2110. |
[14] | Xue Bai, Jingqi Guan. MXenes for electrocatalysis applications: Modification and hybridization [J]. Chinese Journal of Catalysis, 2022, 43(8): 2057-2090. |
[15] | Yang Lei, Jian-Feng Huang, Xin-Ao Li, Chu-Ying Lv, Chao-Ping Hou, Jun-Min Liu. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(8): 2249-2258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||