Chinese Journal of Catalysis ›› 2023, Vol. 51: 193-203.DOI: 10.1016/S1872-2067(23)64478-X
• Articles • Previous Articles Next Articles
Xiuli Shaoa,1, Ke Lia,1, Jingping Lia, Qiang Chenga, Guohong Wanga,*(), Kai Wanga,b,*()
Received:
2023-05-11
Accepted:
2023-06-21
Online:
2023-08-18
Published:
2023-09-11
Contact:
*E-mail: wanggh2003@163.com (G. Wang), wangkai@hbnu.edu.cn (K. Wang).
About author:
First author contact:1Contributed equally to this work.
Supported by:
Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion[J]. Chinese Journal of Catalysis, 2023, 51: 193-203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64478-X
Fig. 1. (a) Schematic for the preparation of NiS@Ta2O5 hybrid nanofibers. TEM image of (b) Ta2O5, (c) Ni(OH)2@Ta2O5 and (d) NiS@Ta2O5 hybrid nanofibers. (e) HRTEM and (f) HAADF-STEM images of 20NSTO composites and EDX mapping images of Ta, O, Ni, and S elements.
Fig. 4. (a) UV-vis diffuse reflectance spectra of Ta2O5, NiS, 10NSTO, 20NSTO, and 50NSTO. Tauc plots (b), VB-XPS spectra (c) and band structure (d) of Ta2O5 nanofibers and NiS nanosheets.
Fig. 6. Time-dependent CH4 (a) and CO (b) production rate over as-prepared samples. Control experiments (c) and the photocatalytic cycle performance (d) of 20NSTO.
Fig. 7. CO2-TPD (a) and CO-TPD (b) profiles of Ta2O5, NiS and 20NSTO. In situ DRIFTS measurements of Ta2O5 (c) and 20NSTO (d) under full spectrum light irradiation in pure CO2.
Fig. 8. Calculated electrostatic potentials of Ta2O5 (a) and NiS (b). Planar-averaged electron density difference ρ(z) (c) and 2D charge density difference (d) for NiS@Ta2O5 heterojunction.
Fig. 9. ESR signals of Ta2O5, NiS, and 20NSTO for (a) DMPO-superoxide radical and (b) DMPO-hydroxyl radical under irradiation for 10 min, respectively. (c) Schematic illustration of NiS@Ta2O5 heterojunction.
|
[1] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[2] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[3] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Nan Yin, Weibin Chen, Yong Yang, Zheng Tang, Panjie Li, Xiaoyue Zhang, Lanqin Tang, Tianyu Wang, Yang Wang, Yong Zhou, Zhigang Zou. Tröger’s base derived 3D-porous aromatic frameworks with efficient exciton dissociation and well-defined reactive site for near-unity selectivity of CO2 photo-conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 168-179. |
[6] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[7] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[8] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[9] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[10] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[11] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[12] | Yan Wei, Ruizhi Duan, Qiaolan Zhang, Youzhi Cao, Jinyuan Wang, Bing Wang, Wenrui Wan, Chunyan Liu, Jiazang Chen, Hong Gao, Huanwang Jing. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 243-253. |
[13] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[14] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[15] | Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 55(12): 137-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||