Chinese Journal of Catalysis ›› 2023, Vol. 51: 90-100.DOI: 10.1016/S1872-2067(23)64492-4
• Articles • Previous Articles Next Articles
Lijuan Suna,b, Weikang Wangb, Ping Lua, Qinqin Liub,*(), Lele Wangb, Hua Tanga,*()
Received:
2023-05-17
Accepted:
2023-07-17
Online:
2023-08-18
Published:
2023-09-11
Contact:
*E-mail: huatang79@163.com (H. Tang), qqliu@ujs.edu.cn (Q. Liu).
Supported by:
Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys[J]. Chinese Journal of Catalysis, 2023, 51: 90-100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64492-4
Fig. 1. (a,b) TEM images of HH-10. Inset shows the histogram of particle size distributions of HEA NPs. (c) HRTEM image of HH-10. AFM images of HCN (d) and HH-10 (e).
Fig. 2. XPS compositional analysis. Survey XPS spectra of HCN, HEA (a), and HH-10 (b) samples. High-resolution XPS spectra of Pt 4f (c), Fe 2p (d), Co 2p (e), Ni 2p (f), Cu 2p (g), C 1s (h), and N 1s (i).
Fig. 3. UPS spectra of the HCN (a), HH-10 (b), and HEA (c) samples. Possible photocatalytic mechanism of the HCN/HEA Schottky junction before contact (d), after contact (e), and under irradiation (f).
Fig. 4. (a) Comparison of photocatalytic activities of HCN, HEA, and HH-x samples in the photocatalytic conversion of 10% BA to H2 and BAD. (b) AQY of HH-10 sample. (c) Comparison of the photocatalytic conversion of BA to BAD and HER by different metal cocatalysts. (d) Cyclic stability of HH-5 composite sample. Reaction solution: 72 mL of water and 8 ml BA. LED light source: λ = 420 nm, 67.7 mW cm-2.
Fig. 5. Transient photocurrent response (a) and EIS (b) plots of HCN and HH-10 samples. Visible light-driven LSV curves (c) and Tafel slope (d) of HCN, HEA, and HH-10 samples. PL spectra (e) and TR-PL (f) decay spectra of HCN and HH-10 samples. Transient photocurrent density of HCN (g) and HH-10 (h) with/without adding H2O2. (i) SPV spectra of HCN and HH-10.
Fig. 6. AFM topography and KPFM image of the HH-10 sample in dark (a,b) and under 420 nm light illumination (c,d). (e) Height distribution of HEA NPs on HCN NSs surface. (f) Surface potential profiles under dark conditions and 420 nm light illumination (the quantitative values are all relative to the same calibrated probe).
|
[1] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[2] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[3] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[6] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[7] | Min Lin, Meilan Luo, Yongzhi Liu, Jinni Shen, Jinlin Long, Zizhong Zhang. 1D S-scheme heterojunction of urchin-like SiC-W18O49 for enhancing photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 50(7): 239-248. |
[8] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[9] | Haibo Zhang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization [J]. Chinese Journal of Catalysis, 2023, 49(6): 42-67. |
[10] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[11] | Yanchang Liu, Xinlong Tian, Ye-Chuang Han, Yanan Chen, Wenbin Hu. High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis [J]. Chinese Journal of Catalysis, 2023, 48(5): 66-89. |
[12] | Meiyu Zhang, Kongming Li, Chunlian Hu, Kangwei Ma, Wanjun Sun, Xianqiang Huang, Yong Ding. Co nanoparticles modified phase junction CdS for photoredox synthesis of hydrobenzoin and hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 47(4): 254-264. |
[13] | Yan Wei, Ruizhi Duan, Qiaolan Zhang, Youzhi Cao, Jinyuan Wang, Bing Wang, Wenrui Wan, Chunyan Liu, Jiazang Chen, Hong Gao, Huanwang Jing. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 243-253. |
[14] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[15] | Dan Zhang, Yue Shi, Xilei Chen, Jianping Lai, Bolong Huang, Lei Wang. High-entropy alloy metallene for highly efficient overall water splitting in acidic media [J]. Chinese Journal of Catalysis, 2023, 45(2): 174-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||