Chinese Journal of Catalysis ›› 2023, Vol. 51: 66-79.DOI: 10.1016/S1872-2067(23)64488-2
• Articles • Previous Articles Next Articles
Xiu-Qing Qiaoa,b,*(), Chen Lia, Zizhao Wanga, Dongfang Houa,b, Dong-Sheng Lia,b,*()
Received:
2023-04-28
Accepted:
2023-06-15
Online:
2023-08-18
Published:
2023-09-11
Contact:
*E-mail: qiaoxiuqing@126.com (X.-Q. Qiao), lidongsheng1@126.com (D.-S. Li).
Supported by:
Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance[J]. Chinese Journal of Catalysis, 2023, 51: 66-79.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64488-2
Fig. 3. TEM (a) and HRTEM (b) images of P25. TEM (c) and HRTEM (d) images of TiO2-x@C. (e) HAADF-STEM image, (e1) overlap and (e2)-(e4) element mapping of TiO2-x@C. (f-h) HRTEM image of TCM-1 sample and (i) inverse FFT pattern of HRTEM image. (j) HAADF-STEM image, (j1) overlap and (j2)-(j5) element mapping of TCM-1 sample.
Fig. 4. (a) EPR signals of P25, TiO2-x, TiO2-x@C, and TCM-1 samples. (b) XPS survey spectra of TiO2-x@C and TCM-1 samples. High-resolution XPS spectra of C 1s (c), Ti 2p (d), Mo 3d (e), and O 1s (f) of TiO2-x@C and TCM-1 photocatalysts.
Fig. 5. H2 production over time (a) and a comparison (b) of photocatalytic H2 generation rate of various photocatalysts. (c) Comparison of H2 evolution rates over TCM-1 and other reported photocatalysts. (d) Cyclic use of the TCM-1 photocatalyst. (e) XRD diffraction patterns of fresh and recycled TCM-1 photocatalyst.
Fig. 6. (a) UV-vis DRS spectra of all photocatalysts showing the Tauc plots used for the band gap determination of P25 and TiO2-x. (b) Mott-Schottky plots of TiO2-x. EIS Nyquist plots (c), PL spectra (d) of all samples. Photocurrent response (e) and time-resolved photoluminescence lifetime curves (f) of samples.
Fig. 9. (a) Photocatalytic degradation of TC under visible light, kinetics curves for TC degradation (b) and Cr(VI) reduction (c), and first-order reaction kinetics (d) over different photocatalysts. EPR spectra for ?OH (e) and ?O2- (f). (g) Comparison of the kinetic rate constants of previously reported photocatalysts.
Target | LC50-96hr (mg L‒1) | LD50 (mg Kg‒1) | Bioaccumulation factor | Developmental toxicity | Mutagenic |
---|---|---|---|---|---|
C1 | 0.9 | 1524.04 | 0.71 | 0.86 Toxicant | 0.60 Positive |
C2 | 0.33 | 1363.25 | 1.65 | 0.90 Toxicant | 0.64 Positive |
C3 | 0.22 | 1197.10 | N/A | 0.91 Toxicant | 0.35 Negative |
C4 | 0.90 | 1052.15 | 0.95 | 0.82 Toxicant | 0.63 Positive |
C5 | 0.78 | 103.62 | 8.34 | 0.84 Toxicant | 0.88 Positive |
C6 | 1102.04 | 6270.10 | 2.43 | 0.51 Toxicant | 0.01 Negative |
C7 | 234.20 | 2970.28 | 7.68 | 0.50 Non-toxicant | ‒0.01 Negative |
C8 | 6.62 | 1529.48 | 0.36 | 0.85 Toxicant | 0.66 Positive |
C9 | N/A | 979.17 | N/A | 0.78 Toxicant | 0.40 Negative |
C10 | 0.27 | 437.29 | 0.17 | 0.87 Toxicant | 0.63 Positive |
Table 1 Toxicity of the TC/intermediates evaluated by T.E.S.T.
Target | LC50-96hr (mg L‒1) | LD50 (mg Kg‒1) | Bioaccumulation factor | Developmental toxicity | Mutagenic |
---|---|---|---|---|---|
C1 | 0.9 | 1524.04 | 0.71 | 0.86 Toxicant | 0.60 Positive |
C2 | 0.33 | 1363.25 | 1.65 | 0.90 Toxicant | 0.64 Positive |
C3 | 0.22 | 1197.10 | N/A | 0.91 Toxicant | 0.35 Negative |
C4 | 0.90 | 1052.15 | 0.95 | 0.82 Toxicant | 0.63 Positive |
C5 | 0.78 | 103.62 | 8.34 | 0.84 Toxicant | 0.88 Positive |
C6 | 1102.04 | 6270.10 | 2.43 | 0.51 Toxicant | 0.01 Negative |
C7 | 234.20 | 2970.28 | 7.68 | 0.50 Non-toxicant | ‒0.01 Negative |
C8 | 6.62 | 1529.48 | 0.36 | 0.85 Toxicant | 0.66 Positive |
C9 | N/A | 979.17 | N/A | 0.78 Toxicant | 0.40 Negative |
C10 | 0.27 | 437.29 | 0.17 | 0.87 Toxicant | 0.63 Positive |
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[3] | Jiaming Li, Yuan Li, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang. Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight [J]. Chinese Journal of Catalysis, 2023, 51(8): 145-156. |
[4] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[5] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[6] | Meiyu Zhang, Kongming Li, Chunlian Hu, Kangwei Ma, Wanjun Sun, Xianqiang Huang, Yong Ding. Co nanoparticles modified phase junction CdS for photoredox synthesis of hydrobenzoin and hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 47(4): 254-264. |
[7] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[8] | Zhuogen Li, Qadeer Ul Hassan, Weibin Zhang, Lujun Zhu, Jianzhi Gao, Xianjin Shi, Yu Huang, Peng Liu, Gangqiang Zhu. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3‒δ: Experimental and theoretical verification [J]. Chinese Journal of Catalysis, 2023, 46(3): 113-124. |
[9] | Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation [J]. Chinese Journal of Catalysis, 2023, 46(3): 125-136. |
[10] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[11] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[12] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[13] | Xiu Qian, Yanjiao Wei, Mengjie Sun, Ye Han, Xiaoli Zhang, Jian Tian, Minhua Shao. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2Tx MXene to improve the electrocatalytic nitrogen reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1937-1944. |
[14] | Qing Yao, Jiabo Le, Shize Yang, Jun Cheng, Qi Shao, Xiaoqing Huang. A trace of Pt can significantly boost RuO2 for acidic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1493-1501. |
[15] | Yu Deng, Jue Li, Rumeng Zhang, Chunqiu Han, Yi Chen, Ying Zhou, Wei Liu, Po Keung Wong, Liqun Ye. Solar-energy-driven photothermal catalytic C-C coupling from CO2 reduction over WO3-x [J]. Chinese Journal of Catalysis, 2022, 43(5): 1230-1237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||