Chinese Journal of Catalysis ›› 2023, Vol. 52: 50-78.DOI: 10.1016/S1872-2067(23)64504-8
• Reviews • Previous Articles Next Articles
Yan Hong,1, Qi Wang,1, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu*(), Bin Li*()
Received:
2023-05-24
Accepted:
2023-08-07
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Song Liu is a professor at Northeast Forestry University. He received his B.S. degree (2014) from Jilin University and his PhD degree (2020) in catalysis from Dalian Institute of Chemical Physics, Chinese Academy of Sciences. His research interests include design and preparation of efficient biomass-based electrocatalytic materials, mechanism analysis of electrocatalytic reaction and electrocatalytic biomass conversion.Supported by:
Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia[J]. Chinese Journal of Catalysis, 2023, 52: 50-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64504-8
Fig. 2. (a) Overview diagram of nitrogen fixing enzyme. (b) A graphic representation of the nitrogen-fixing enzyme's structure. (c) Schematics of dinitrogen molecular orbitals hybridized by nitrogen atomic orbitals and the electron arrangement of element.
Fig. 3. (a) Schematic diagram of NH4+ quantitative analysis. Spectrophotometric method (b) and ion selective electrode (c) and ion chromatography (d) for the detection of NH4+ in NRR. (e) Comparison of the three methods for NH3 quantification. Reprinted with permission from Ref. [55]. Copyright 2019, John Wiley and Sons. (f,g) Standard curves of different concentrations of 15NH3 by 1H NMR spectra. Reprinted with permission from Ref. [58]. Copyright 2021, John Wiley and Sons.
Fig. 4. (a) LIR comparison between several cathode materials. Reprinted with permission from Ref. [58]. Copyright 2021, John Wiley and Sons. (b) Schematic representation of the chemical properties of proton carriers in lithium-mediated electrocatalytic synthesis of ammonia gas. (c,d) Comparison of TiO2 nano-array electrodes obtained with/without 20 wt% PEG in acidic and alkaline electrolytes. (c,d) Reprinted with permission from Ref. [59]. Copyright 2021, John Wiley and Sons. (e) CV curves of PEBCD/C electrodes in Li2SO4 electrolyte. (f) FTIR spectra of PEBCD before and after Li+ incorporation. Reprinted with permission from Ref. [63]. Copyright 2017, American Chemical Society. (g) N2 adsorption energy on Sb (100). (h) Sb-N and A-N interatomic dimensions for N2 adsorbates, in addition to the appropriately optimized structures. Reprinted with permission from Ref. [61]. Copyright 2022, American Chemical Society.
Fig. 6. (a) Geometric model of Au THH NR and exposed 24 facets. Reprinted with permission from Ref. [68]. Copyright 2016, John Wiley and Sons. (b) Schematic diagrams of face-centered cubic PdCu and body-centered cubic PdCu structures. Reprinted with permission from Ref. [69]. Copyright 2020, John Wiley and Sons. (c) TEM image of NPG@ZIF-8 composite. (d) SEM image of Mo/VO2. (e) TEM images of Rh-Se NCs. (f) FE of VO2 and Mo/VO2 at various potentials. (g) Comparative electrochemical properties of different materials. (h) NH3 yields at various applied potentials of Rh-Se NCs/C. (c,g) Reprinted with permission from Ref. [74]. Copyright 2019, Copyright 2020, John Wiley and Sons. (d,f) Reprinted with permission from Ref. [47]. Copyright 2023, Copyright 2020, John Wiley and Sons. (e,h) Reprinted with permission from Ref. [23]. Copyright 2020, John Wiley and Sons.
Fig. 7. (a) Diagram of the interaction between metal and carrier. (b) Charge transfer schematic. (c) Au 4f spectra of Au/CoOx samples after 10 h of electrolysis at -0.5 V vs. RHE. Reprinted with permission from Ref. [76]. Copyright 2019, John Wiley and Sons. (d) Interfacial perimeter schematic. (e) Chemical composition diagram. (f) Schematic diagram of strong metal-carrier interaction (SMSI). (g) Diagrams of the Mo-PTA@CNT schematic. Reprinted with permission from Ref. [79]. Copyright 2021, John Wiley and Sons. (h) N2 molecule adsorption energies on TiO2(B) and Li-TiO2(B) surfaces, respectively. Reprinted with permission from Ref. [81]. Copyright 2022, Elsevier. (i) Average NH3 yields of Au/Fe2(MoO4)3, Fe2(MoO4)3 and Au/C catalysts at different potentials. Reprinted with permission from Ref. [82]. Copyright 2021, John Wiley and Sons.
Fig. 8. (a) Schematic diagram of bimetallic synergy. (b) Schematic diagram of Au6/Ni electrocatalytic reduction of N2 to NH3. (c) Au6/Ni catalyst NH3 production at various potentials. (b,c) Reprinted with permission from Ref. [30]. American Chemical Society. (d) Flow chart for the preparation of core-shell manganese oxide. Reprinted with permission from Ref. [90]. Copyright 2022, American Chemical Society. (e) Schematic diagram of np-Pd3Bi. (f) The mass-normalized NH3 yield rates of commercial Pd/C, np-Pd3Bi, and np-PdBi2 at the applied voltage. (e,f) Reprinted with permission from Ref. [87]. Copyright 2021, John Wiley and Sons.
Fig. 9. (a) Diagram of single atom and particle synergy. (b) Faraday efficiency of Au-Cys-Mo catalysts at different potentials. Reprinted with permission from Ref. [94]. Copyright 2021, John Wiley and Sons. (c) HAADF-STEM images of MoSAs-Mo2C/NCNTs. (d) An illustration showing the morphology of CNT@C3N4-Fe&Cu. (e) Comparison of different materials' Faraday efficiencies at four applied potentials. (f) NH3 yield rate and FE of various samples. (c,f) Reprinted with permission from Ref. [96]. Copyright 2020, John Wiley and Sons. (d,e) Reprinted with permission from Ref. [95]. Copyright 2020, John Wiley and Sons.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal- support interaction | Au/TiO2 | 0.01 mol L-1 HCl | 64.6 μg h-1 mg-1 | 29.5 | -0.4 | [ |
Au NPs/TiO2 | HCl (pH=1) | 21.4 μg h-1 mg-1 | 8.11 | -0.2 | [ | |
Au/CoOx | 0.05 mol L-1 H2SO4 | 15.1 μg cm-2 h-1 | 19 | -0.5 | [ | |
MoS2/Mo2C | 0.05 mol L-1 H2SO4 | 1.41 μg cm-2 h-1 | 42 | -0.1 | [ | |
FeNi2S4/NiS | 0.1 mol L-1 KOH | 128.39 ± 1.32 µg h-1cm-2 | 28.6 ± 0.18 | -0.3 | [ | |
Mo-PTA@CNT | 0.1 mol L-1 K2SO4 | 51 ± 1 μg h-1 mg-1 | 83 ± 1 | -0.1 | [ | |
Au3Cu@Cu | 0.1 mol L-1 Na2SO4 | 33.97 μg h-1 mg-1 | 21.41 | -0.2 | [ | |
Li-TiO2(B) | 0.5 mol L-1 LiClO4 | 8.7 μg h-1 mg-1 | 18.2 | -0.4 | [ | |
Au/Fe2(MoO4)3 | 0.2 mol L-1 Na2SO4 | 7.61 μg h-1 mg-1 | 18.79 | -0.4 | [ | |
Fe/MoS2 | 0.1 mol L-1 Na2SO4 | 12.5 µg h-1 cm-2 | 1.7 | -0.1 | [ | |
Metal- metal interaction | Au6/Ni | 0.05 mol L-1 H2SO4 | 7.4 μg h-1 mg-1 | 67.8 | -0.14 | [ |
RuPt | 1.0 mol L-1 KOH | 6.37 × 10−10 mol s-1 cm-2 | 1.1 | -0.077 | [ | |
CuAu@2LCS | 0.1 mol L-1 HCl | 33.9 μg h-1 mg-1 | 24.1 | -0.2 | [ | |
np-Pd3Bi | 0.05 mol L-1 H2SO4 | 59.05 ± 2.27 μg h-1 mg-1 | 21.52 ± 0.71 | -0.2 | [ | |
Fe3Mo3C | 1 mol L-1 KOH | 13.10 µg h-1 cm-2 | 14.74 | -0.5 | [ | |
FeNi@CNS | 0.1 mol L-1 Na2SO4 | 16.52 µg h-1 cm-2 | 9.83 | -0.2 | [ | |
Particle-monoatom interaction | Fe-SnO2 | 0.1 mol L-1 HCl | 82.7 μg h-1 mg-1 | 20.4 | -0.3 | [ |
Au25-Cys-Mo | 0.1 mol L-1 HCl | 34.5 μg h-1 mg-1 | 26.5 | -0.5 | [ | |
CNT@C3N4-Fe&Cu | 0.25 mol L-1 LiClO4 | 9.86 μg h-1 mg-1 | 34 | -0.8 | [ | |
MoSAs-Mo2C/NCNTs | 0.005 mol L-1 H2SO4 + 0.1 mol L-1 K2SO4 | 16.1 µg h-1 cm-2 | 7.1 | -0.2 | [ |
Table 1 Recent publications on the application of synergy to electrocatalytic N2 reduction of NH3.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal- support interaction | Au/TiO2 | 0.01 mol L-1 HCl | 64.6 μg h-1 mg-1 | 29.5 | -0.4 | [ |
Au NPs/TiO2 | HCl (pH=1) | 21.4 μg h-1 mg-1 | 8.11 | -0.2 | [ | |
Au/CoOx | 0.05 mol L-1 H2SO4 | 15.1 μg cm-2 h-1 | 19 | -0.5 | [ | |
MoS2/Mo2C | 0.05 mol L-1 H2SO4 | 1.41 μg cm-2 h-1 | 42 | -0.1 | [ | |
FeNi2S4/NiS | 0.1 mol L-1 KOH | 128.39 ± 1.32 µg h-1cm-2 | 28.6 ± 0.18 | -0.3 | [ | |
Mo-PTA@CNT | 0.1 mol L-1 K2SO4 | 51 ± 1 μg h-1 mg-1 | 83 ± 1 | -0.1 | [ | |
Au3Cu@Cu | 0.1 mol L-1 Na2SO4 | 33.97 μg h-1 mg-1 | 21.41 | -0.2 | [ | |
Li-TiO2(B) | 0.5 mol L-1 LiClO4 | 8.7 μg h-1 mg-1 | 18.2 | -0.4 | [ | |
Au/Fe2(MoO4)3 | 0.2 mol L-1 Na2SO4 | 7.61 μg h-1 mg-1 | 18.79 | -0.4 | [ | |
Fe/MoS2 | 0.1 mol L-1 Na2SO4 | 12.5 µg h-1 cm-2 | 1.7 | -0.1 | [ | |
Metal- metal interaction | Au6/Ni | 0.05 mol L-1 H2SO4 | 7.4 μg h-1 mg-1 | 67.8 | -0.14 | [ |
RuPt | 1.0 mol L-1 KOH | 6.37 × 10−10 mol s-1 cm-2 | 1.1 | -0.077 | [ | |
CuAu@2LCS | 0.1 mol L-1 HCl | 33.9 μg h-1 mg-1 | 24.1 | -0.2 | [ | |
np-Pd3Bi | 0.05 mol L-1 H2SO4 | 59.05 ± 2.27 μg h-1 mg-1 | 21.52 ± 0.71 | -0.2 | [ | |
Fe3Mo3C | 1 mol L-1 KOH | 13.10 µg h-1 cm-2 | 14.74 | -0.5 | [ | |
FeNi@CNS | 0.1 mol L-1 Na2SO4 | 16.52 µg h-1 cm-2 | 9.83 | -0.2 | [ | |
Particle-monoatom interaction | Fe-SnO2 | 0.1 mol L-1 HCl | 82.7 μg h-1 mg-1 | 20.4 | -0.3 | [ |
Au25-Cys-Mo | 0.1 mol L-1 HCl | 34.5 μg h-1 mg-1 | 26.5 | -0.5 | [ | |
CNT@C3N4-Fe&Cu | 0.25 mol L-1 LiClO4 | 9.86 μg h-1 mg-1 | 34 | -0.8 | [ | |
MoSAs-Mo2C/NCNTs | 0.005 mol L-1 H2SO4 + 0.1 mol L-1 K2SO4 | 16.1 µg h-1 cm-2 | 7.1 | -0.2 | [ |
Fig. 10. (a) Schematic diagram of the doping of metallic and non-metallic atoms in nanomaterials. (b) NH3 yields of different materials such as W18O49 at different potentials. (c) Schematic diagram of Fe doped W18O49 nanowires @CFP. (b,c) Reprinted with permission from Ref. [97]. Copyright 2020, John Wiley and Sons. (d) NPC schematic. Reprinted with permission from Ref. [114]. Copyright 2018, American Chemical Society. (e) NRR for BG is shown graphically. (f) The NH3 production rates of BG-1, BOG, BG-2, and G at different potentials. Reprinted with permission from Ref. [112]. Copyright 2018, Elsevier. (g) Diagram of P-C3N4. Reprinted with permission from Ref. [118]. Copyright 2023, John Wiley and Sons. (h) Diagrammatic representation of the MoS2-7H-catalyzed reduction of N2 to NH3. Reprinted with permission from Ref. [124]. Copyright 2022, Elsevier.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal-doping | Fe-W18O49 | 0.25 mol L-1 LiClO4 | 24.7 μg h-1 mgcat-1 | 20 | -0.15 | [ |
Fe-Ni2P | 0.1 mol L-1 HCl | 88.51 μg h-1 mgcat-1 | 7.92 | -0.3 | [ | |
0.50Fe-Bi2WO6 | 0.05 mol L-1 H2SO4 | 289 μg h-1 mgcat-1 | 2 | -0.75 | [ | |
a-FeB2 PNSs | 0.5 mol L-1 LiClO4 | 39.8 μg h-1 mgcat-1 | 16.7 | -0.3 | [ | |
B-doping | Boron nanosheets | 0.1 mol L-1 HCl | 3.12 μg h-1 mgcat-1 | 4.84 | -0.14 | [ |
BNNRs | 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat-1 | 15.95 | -0.75 | [ | |
BCN | 0.05 mol L-1 Na2SO4 | 8.39 μg h-1 mgcat-1 | 9.87 | -0.3 | [ | |
Eex-COF/NC | 0.1 mol L-1 KOH | 12.53 μg h-1 mgcat-1 | 45.34 | -0.2 | [ | |
BG | 0.05 mol L-1 H2SO4 | 9.8 μg h-1 cm-2 | 10.8 | -0.5 | [ | |
N-doping | NPC-750 | 0.05 mol L-1 H2SO4 | 1.4 mmol g-1 h-1 | 1.42 | -0.9 | [ |
C-ZIF-1100 | 0.1 mol L-1 KOH | 3.4 × 10-6 mol cm-2 h-1 | 10.2 | -0.3 | [ | |
CNS | 0.25 mol L-1 LiClO4 | 97.18 ± 7.13 µg h-1 cm-2 | 11.56 ± 0.85 | -1.19 | [ | |
P-doping | P-NV-C3N4 | 0.1 mol L-1 Na2SO4 | 28.67 µg h-1 mgcat-1 | 22.15 | -0.3 | [ |
FL-BP NSs | 0.01 mol L-1 HCl | 31.37 µg h-1 mgcat-1 | 5.07 | -0.7 | [ | |
Crp NRs/NF | 0.1 mol L-1 Na2SO4 | 15.4 µg h-1 mgcat-1 | 9.4 | -0.2 | [ | |
S-doping | SDG | 0.5 mol L-1 LiClO4 | 28.56 µg h-1 mgcat-1 | 7.07 | -0.85 | [ |
S-NV-C3N4 | 0.5 mol L-1 LiClO4 | 32.7 µg h-1 mgcat-1 | 14.1 | -0.4 | [ | |
S-CNS | 0.1 mol L-1 Na2SO4 | 19.07 µg h-1 mgcat-1 | 7.47 | -0.7 | [ | |
S-MoS2 | 0.5 mol L-1 H2SO4 | 43.4 ± 3 μg h-1 mgcat-1 | 16.8 ± 2 | -0.3 | [ | |
MoS2-Vs | 0.5 mol L-1 LiClO4 | 66.74 μg h-1 mgcat-1 | 14.68 | -0.6 | [ | |
Mo-SnS2/CC | 0.5 mol L-1 LiClO4 | 41.3 μg h-1 mgcat-1 | 20.8 | -0.4 | [ |
Table 2 Recently published papers on doping engineering for eNRR.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal-doping | Fe-W18O49 | 0.25 mol L-1 LiClO4 | 24.7 μg h-1 mgcat-1 | 20 | -0.15 | [ |
Fe-Ni2P | 0.1 mol L-1 HCl | 88.51 μg h-1 mgcat-1 | 7.92 | -0.3 | [ | |
0.50Fe-Bi2WO6 | 0.05 mol L-1 H2SO4 | 289 μg h-1 mgcat-1 | 2 | -0.75 | [ | |
a-FeB2 PNSs | 0.5 mol L-1 LiClO4 | 39.8 μg h-1 mgcat-1 | 16.7 | -0.3 | [ | |
B-doping | Boron nanosheets | 0.1 mol L-1 HCl | 3.12 μg h-1 mgcat-1 | 4.84 | -0.14 | [ |
BNNRs | 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat-1 | 15.95 | -0.75 | [ | |
BCN | 0.05 mol L-1 Na2SO4 | 8.39 μg h-1 mgcat-1 | 9.87 | -0.3 | [ | |
Eex-COF/NC | 0.1 mol L-1 KOH | 12.53 μg h-1 mgcat-1 | 45.34 | -0.2 | [ | |
BG | 0.05 mol L-1 H2SO4 | 9.8 μg h-1 cm-2 | 10.8 | -0.5 | [ | |
N-doping | NPC-750 | 0.05 mol L-1 H2SO4 | 1.4 mmol g-1 h-1 | 1.42 | -0.9 | [ |
C-ZIF-1100 | 0.1 mol L-1 KOH | 3.4 × 10-6 mol cm-2 h-1 | 10.2 | -0.3 | [ | |
CNS | 0.25 mol L-1 LiClO4 | 97.18 ± 7.13 µg h-1 cm-2 | 11.56 ± 0.85 | -1.19 | [ | |
P-doping | P-NV-C3N4 | 0.1 mol L-1 Na2SO4 | 28.67 µg h-1 mgcat-1 | 22.15 | -0.3 | [ |
FL-BP NSs | 0.01 mol L-1 HCl | 31.37 µg h-1 mgcat-1 | 5.07 | -0.7 | [ | |
Crp NRs/NF | 0.1 mol L-1 Na2SO4 | 15.4 µg h-1 mgcat-1 | 9.4 | -0.2 | [ | |
S-doping | SDG | 0.5 mol L-1 LiClO4 | 28.56 µg h-1 mgcat-1 | 7.07 | -0.85 | [ |
S-NV-C3N4 | 0.5 mol L-1 LiClO4 | 32.7 µg h-1 mgcat-1 | 14.1 | -0.4 | [ | |
S-CNS | 0.1 mol L-1 Na2SO4 | 19.07 µg h-1 mgcat-1 | 7.47 | -0.7 | [ | |
S-MoS2 | 0.5 mol L-1 H2SO4 | 43.4 ± 3 μg h-1 mgcat-1 | 16.8 ± 2 | -0.3 | [ | |
MoS2-Vs | 0.5 mol L-1 LiClO4 | 66.74 μg h-1 mgcat-1 | 14.68 | -0.6 | [ | |
Mo-SnS2/CC | 0.5 mol L-1 LiClO4 | 41.3 μg h-1 mgcat-1 | 20.8 | -0.4 | [ |
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal vacancies | etched-PdZn/NHCP | 0.1 mol L-1 PBS | 5.28 µg h-1 mgcat-1 | 16.9 | -0.2 | [ |
MV-MoN@NC | 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat-1 | 6.9 | -0.2 | [ | |
Ni-NFV | 0.1 mol L-1 PBS | 7.3 µg h-1 mgcat-1 | 4.4 | -0.4 | [ | |
Oxygen vacancies | α-Fe2O3 | 0.1 mol L-1 KOH | 0.46 µg h-1 cm-2 | 6.04 | -0.9 | [ |
TiO2/CeO2 | 0.1 mol L-1 HCl | 8.8 µg h-1 mgcat-1 | 6.8 | -0.25 | [ | |
Cu NPs/TiO2 | 0.1 mol L-1 Na2SO4 | 13.6 µg h-1 mgcat-1 | 17.9 | -0.4 | [ | |
MoO3-x/MXene | 0.1 mol L-1 KOH | 95.8 µg h-1 mgcat-1 | 22.3 | -0.4 | [ | |
TiO2-V(o) | 0.1 mol L-1 HCl | 3.0 µg h-1 mgcat-1 | 6.5 | -0.12 | [ | |
WO3-x(Vo)_H2 | 0.5 mol L-1 H2SO4 | 4.2 µg h-1 mgcat-1 | 6.8 | -0.12 | [ | |
MvK theoretical vacancies | VN | 1 mmol L-1 H2SO4 | 3.3 × 10-10 mol s-1 cm-2 | 6.0 | -0.1 | [ |
Mo2N | 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat-1 | 4.5 | -0.3 | [ |
Table 3 A recently published paper on vacancy engineering for eNRR.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal vacancies | etched-PdZn/NHCP | 0.1 mol L-1 PBS | 5.28 µg h-1 mgcat-1 | 16.9 | -0.2 | [ |
MV-MoN@NC | 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat-1 | 6.9 | -0.2 | [ | |
Ni-NFV | 0.1 mol L-1 PBS | 7.3 µg h-1 mgcat-1 | 4.4 | -0.4 | [ | |
Oxygen vacancies | α-Fe2O3 | 0.1 mol L-1 KOH | 0.46 µg h-1 cm-2 | 6.04 | -0.9 | [ |
TiO2/CeO2 | 0.1 mol L-1 HCl | 8.8 µg h-1 mgcat-1 | 6.8 | -0.25 | [ | |
Cu NPs/TiO2 | 0.1 mol L-1 Na2SO4 | 13.6 µg h-1 mgcat-1 | 17.9 | -0.4 | [ | |
MoO3-x/MXene | 0.1 mol L-1 KOH | 95.8 µg h-1 mgcat-1 | 22.3 | -0.4 | [ | |
TiO2-V(o) | 0.1 mol L-1 HCl | 3.0 µg h-1 mgcat-1 | 6.5 | -0.12 | [ | |
WO3-x(Vo)_H2 | 0.5 mol L-1 H2SO4 | 4.2 µg h-1 mgcat-1 | 6.8 | -0.12 | [ | |
MvK theoretical vacancies | VN | 1 mmol L-1 H2SO4 | 3.3 × 10-10 mol s-1 cm-2 | 6.0 | -0.1 | [ |
Mo2N | 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat-1 | 4.5 | -0.3 | [ |
Fig. 11. (a) Schematic diagram of metallic and non-metallic vacancies. (b) Schematic diagram of a layered porous MoN@NC with a large number of Mo vacancies. (c) NH3 yields with different catalysts at -0.2 V vs. RHE. (b,c) Reprinted with permission from Ref. [127]. Copyright 2020, Elsevier. (d) Ni-B and Ni-V system free energy maps have been established. (e) Synthesis process of catalytic nickel nanoflowers. Reprinted with permission from Ref. [128]. Copyright 2022, American Chemical Society. (f) Schematic illustration of the molecular structure of TiO2/CeO2 and the proposed mechanism for electrochemical NRR. (g) Catalysts' Faraday efficiency and NH3 yield at particular voltages. Reprinted with permission from Ref. [132]. Copyright 2023, John Wiley and Sons.
Fig. 12. (a) General schematic of heterogeneous structured catalyst for eNRR. (b) Calculated work function of BNQDs and Ti3C2Tx and differential charge density of BNQDs/Ti3C2Tx. Reprinted with permission from Ref. [140]. Copyright 2022, John Wiley and Sons. (c) Synthesis process of Cu3(HITP)2@h-BN heterojunction. Reprinted with permission from Ref. [141]. Copyright 2023, John Wiley and Sons. (d) HAADF-STEM image of CoxNi3-x(HITP)2/BNSs-P (inset: lattice line scan). Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons. (e) Electrochemical properties of NiCoP/CoMoP/Co(Mo3Se4)4@C/NF. Reprinted with permission from Ref. [144]. Elsevier.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
SACs on carbon supports | Au Sac/N-Cs | 0.1 mol L-1 HCl | 2.32 μg h-1 cm-2 | 12.3 | -0.2 | [ |
Fe-N3/CNT | 0.1 mol L-1 KOH | 34.83 μg h-1 mgcat-1 | 9.28 | -0.2 | [ | |
Fe-(O-C2)4 | 0.1 mol L-1 KOH | 32.1 μg h-1 mgcat-1 | 29.3 | -0.1 | [ | |
Mo-SAs/AC | 0.1 mol L-1 Na2SO4 | 2.55 ± 0.31 mg h-1 mgcat-1 | 57.54 ± 6.98 | -0.4 | [ | |
Fe-N2O4 | 0.1 mol L-1 HCl | 31.9 μg h-1 mgcat-1 | 11.8 | -0.4 | [ | |
SACs on non-carbon supports | AuSA/np-MoSe2 | 0.1 mol L-1 Na2SO4 | 30.83 μg h-1 mgcat-1 | 37.82 | -0.3 | [ |
NbSA-TiO2 | 0.1 mol L-1 Na2SO4 | 21.17 μg h-1 mgcat-1 | 9.17 | -0.5 | [ | |
Ru1.4Co3O4-x | 0.1 mol L-1 KOH | 2.67 mg h-1 mgcat-1 | 40.2 | 0 | [ | |
Cd/In2O3 | 0.1 mol L-1 KOH | 57.5 μg h-1 mgcat-1 | 9.6 ± 0.9 | -0.43 | [ | |
Y@TiO2 | 0.1 mol L-1 HCl | 6.3 μg h-1 mgcat-1 | 11.0 | -0.22 | [ | |
Bi-TiN | 0.1 mol L-1 Na2SO4 | 76.15 μg h-1 mgcat-1 | 24.60 | -0.8 | [ | |
Solid-loaded molecular catalysts | FePc-py-CNT | 0.1 mol L-1 HCl | 21.7 μg h-1 mgcat-1 | 22.2 | -0.5 | [ |
CoPc NTs | 0.1 mol L-1 HCl | 107.9 μg h-1 mgcat-1 | 27.7 | -0.3 | [ | |
FeTPPCl | 0.1 mol L-1 Na2SO4-PBS | 18.28 ± 1.6 μg h-1 mgcat-1 | 16.76 ± 0.9 | -0.3 | [ |
Table 4 Recent papers on the application of single-atom catalysts to eNRR.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
SACs on carbon supports | Au Sac/N-Cs | 0.1 mol L-1 HCl | 2.32 μg h-1 cm-2 | 12.3 | -0.2 | [ |
Fe-N3/CNT | 0.1 mol L-1 KOH | 34.83 μg h-1 mgcat-1 | 9.28 | -0.2 | [ | |
Fe-(O-C2)4 | 0.1 mol L-1 KOH | 32.1 μg h-1 mgcat-1 | 29.3 | -0.1 | [ | |
Mo-SAs/AC | 0.1 mol L-1 Na2SO4 | 2.55 ± 0.31 mg h-1 mgcat-1 | 57.54 ± 6.98 | -0.4 | [ | |
Fe-N2O4 | 0.1 mol L-1 HCl | 31.9 μg h-1 mgcat-1 | 11.8 | -0.4 | [ | |
SACs on non-carbon supports | AuSA/np-MoSe2 | 0.1 mol L-1 Na2SO4 | 30.83 μg h-1 mgcat-1 | 37.82 | -0.3 | [ |
NbSA-TiO2 | 0.1 mol L-1 Na2SO4 | 21.17 μg h-1 mgcat-1 | 9.17 | -0.5 | [ | |
Ru1.4Co3O4-x | 0.1 mol L-1 KOH | 2.67 mg h-1 mgcat-1 | 40.2 | 0 | [ | |
Cd/In2O3 | 0.1 mol L-1 KOH | 57.5 μg h-1 mgcat-1 | 9.6 ± 0.9 | -0.43 | [ | |
Y@TiO2 | 0.1 mol L-1 HCl | 6.3 μg h-1 mgcat-1 | 11.0 | -0.22 | [ | |
Bi-TiN | 0.1 mol L-1 Na2SO4 | 76.15 μg h-1 mgcat-1 | 24.60 | -0.8 | [ | |
Solid-loaded molecular catalysts | FePc-py-CNT | 0.1 mol L-1 HCl | 21.7 μg h-1 mgcat-1 | 22.2 | -0.5 | [ |
CoPc NTs | 0.1 mol L-1 HCl | 107.9 μg h-1 mgcat-1 | 27.7 | -0.3 | [ | |
FeTPPCl | 0.1 mol L-1 Na2SO4-PBS | 18.28 ± 1.6 μg h-1 mgcat-1 | 16.76 ± 0.9 | -0.3 | [ |
Fig. 13. (a) Schematic diagram of single atom loading on carbon and non-carbon substrates. (b) Fe-N/C-CNT synthesis is depicted in a schematic. (c) NH3 yield of CNTs, NC-CNTs, and Fe-N/C-CNTs. (b,c) Reprinted with permission from Ref. [159]. Copyright 2019, American Chemical Society. (d) The NC/Bi SAs/TiN/CC the production process can be seen schematically. Reprinted with permission from Ref. [177]. Copyright 2021, John Wiley and Sons. (e) Schematic diagram of Ru-Co3O4-x nanowires. (f) Diagram of AuSA/np-MoSe2. (g) Mass-normalized NH3 yields of the three catalytic materials at each given potential. (h) Partial current density and NH3 yield of Ru1.4Co3O4-x at different potentials. (e,h) Reprinted with permission from Ref. [174]. Copyright 2021, American Chemical Society. (f,g) Reprinted with permission from Ref. [171]. Copyright 2021, John Wiley and Sons.
Fig. 14. (a) Schematic diagram of the original flavor representation means. (b) Raman spectra of MoO3/MoO3-x with time during -0.4 V NRR electrolysis. Reprinted with permission from Ref. [133]. Copyright 2021, John Wiley and Sons. (c) Normalized in-situ Bi L-edge XAS spectra with the electrolyte changed from Ar-saturated to N2-saturated aqueous solutions. Reprinted with permission from Ref. [183]. Copyright 2023, John Wiley and Sons. (d) In-situ FTIR spectra of Ag4Ni2 NCs at -0.2 V. Reprinted with permission from Ref. [49]. Copyright 2022, John Wiley and Sons. (e) Ion current responses to the m/z signal at position 17 under diverse reaction potentials and situations. Reprinted with permission from Ref. [190]. Copyright 2020, John Wiley and Sons.
Fig. 15. (a) Combination volcano diagrams (lines) for the stepped (red) and flat (black) transition metal surfaces for nitrogen reduction with a Heyrovsky-type reaction, without (dotted lines) and with (solid lines) the impact of H-bonds. (b) On a surface doped with B, (111), DFT computed the NRR reaction cycle using an alternate pathway. Reprinted with permission from Ref. [199]. Copyright 2020, American Chemical Society. (c) Schematic illustration: Lewis base lowers the N2 dissociation activating threshold by acting as an electron donor. C, N, and H atoms are each represented by a cyan, red, and grey spherical. Reprinted with permission from Ref. [197]. Copyright 2020, John Wiley and Sons. (d) The atomic structure of CoP nanoparticles. Reprinted with permission from Ref. [204]. Copyright 2022, Elsevier. (e) DFT calculations investigated the NRR catalytic behavior of Bi-based catalysts. Reprinted with permission from Ref. [205]. Copyright 2020, American Chemical Society.
|
[1] | Xiaolong Tang, Feng Li, Fang Li, Yanbin Jiang, Changlin Yu. Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide [J]. Chinese Journal of Catalysis, 2023, 52(9): 79-98. |
[2] | Ji Zhang, Aimin Yu, Chenghua Sun. Theoretical insights into heteronuclear dual metals on non-metal doped graphene for nitrogen reduction reaction [J]. Chinese Journal of Catalysis, 2023, 52(9): 263-270. |
[3] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[4] | Hui Gao, Gong Zhang, Dongfang Cheng, Yongtao Wang, Jing Zhao, Xiaozhi Li, Xiaowei Du, Zhi-Jian Zhao, Tuo Wang, Peng Zhang, Jinlong Gong. Steering electrochemical carbon dioxide reduction to alcohol production on Cu step sites [J]. Chinese Journal of Catalysis, 2023, 52(9): 187-195. |
[5] | Xinyi Zou, Jun Gu. Strategies for efficient CO2 electroreduction in acidic conditions [J]. Chinese Journal of Catalysis, 2023, 52(9): 14-31. |
[6] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[7] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[8] | Na Zhou, Jiazhi Wang, Ning Zhang, Zhi Wang, Hengguo Wang, Gang Huang, Di Bao, Haixia Zhong, Xinbo Zhang. Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 50(7): 324-333. |
[9] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[10] | Qing Niu, Linhua Mi, Wei Chen, Qiujun Li, Shenghong Zhong, Yan Yu, Liuyi Li. Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 45-82. |
[11] | Ling Ouyang, Jie Liang, Yongsong Luo, Dongdong Zheng, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun, Binwu Ying. Recent advances in electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2023, 50(7): 6-44. |
[12] | Cheng-Feng Du, Erhai Hu, Hong Yu, Qingyu Yan. Strategies for local electronic structure engineering of two-dimensional electrocatalysts [J]. Chinese Journal of Catalysis, 2023, 48(5): 1-14. |
[13] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[14] | Yan Wei, Ruizhi Duan, Qiaolan Zhang, Youzhi Cao, Jinyuan Wang, Bing Wang, Wenrui Wan, Chunyan Liu, Jiazang Chen, Hong Gao, Huanwang Jing. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 243-253. |
[15] | Dan-Qing Liu, Bingxing Zhang, Guoqiang Zhao, Jian Chen, Hongge Pan, Wenping Sun. Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 93-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||