Chinese Journal of Catalysis ›› 2024, Vol. 59: 159-168.DOI: 10.1016/S1872-2067(23)64616-9
• Articles • Previous Articles Next Articles
Yang Li, Xiong Wang, Xing-Sheng Hu, Biao Hu, Sheng Tian, Bing-Hao Wang, Lang Chen(), Guang-Hui Chen, Chao Peng, Sheng Shen(), Shuang-Feng Yin()
Received:
2023-11-05
Accepted:
2024-01-24
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: Supported by:
Yang Li, Xiong Wang, Xing-Sheng Hu, Biao Hu, Sheng Tian, Bing-Hao Wang, Lang Chen, Guang-Hui Chen, Chao Peng, Sheng Shen, Shuang-Feng Yin. Pd loaded TiO2 as recyclable catalyst for benzophenone synthesis by coupling benzaldehyde with iodobenzene under UV light[J]. Chinese Journal of Catalysis, 2024, 59: 159-168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64616-9
Fig. 1. (a) XRD patterns of the prepared C-TiO2, 0.85-PdO/C-TiO2 and 0.85-Pd/C-TiO2. (b-e) TEM and HRTEM images with Pd size distribution (in set). (f) EDX mappings of 0.85-Pd/C-TiO2.
Entry | Variations from indicated condition | Conversion of B1 a (%) | Yield a (%) | |
---|---|---|---|---|
C1 | D1 | |||
1 | no variation | 87 | 86 | 1 |
2 | C-TiO2 instead of 0.85-Pd/C-TiO2 | 0 | 0 | 0 |
3 | commercial TiO2 instead of 0.85-Pd/C-TiO2 Pd/commercial TiO2 | 0 | 0 | 0 |
4 b | 70 | 66 | 4 | |
5 b | Pd(OAc)2 instead of 0.85-Pd/C-TiO2 | 83 | 83 | 0 |
6 b | Pd/SiO2 | 85 | 85 | 0 |
7 b | Pd/Al2O3 | 82 | 82 | 0 |
8 | without Na2CO3 | 8 | 8 | 0 |
9 | 1 equiv. Na2CO3 | 60 | 58 | 2 |
10 | NaHCO3 instead of Na2CO3 | 58 | 55 | 3 |
11 | K2CO3 instead of Na2CO3 | 80 | 77 | 3 |
12 | Cs2CO3 instead of Na2CO3 | 72 | 8 | 64 |
13 | A1 (0.2 mmol) | 21 | 16 | 5 |
14 | A1 (0.6 mmol) | 47 | 46 | 1 |
15 | in air | trace | trace | trace |
16 | methanol instead of acetonitrile | >99 | 0 | >99 |
17 | acetone instead of acetonitrile | 55 | 50 | 5 |
18 | in dark | 0 | 0 | 0 |
19 | at 323 or 373 K without irradiation | 0 | 0 | 0 |
20 | Xenon lamp with 350 nm bandpass filter | 49 | 49 | 0 |
21 | Xenon lamp with 365 nm bandpass filter | 28 | 27 | 1 |
22 | λ ≧ 400 nm | 0 | 0 | 0 |
23 | λ ≧ 420 nm | 0 | 0 | 0 |
Table 1 Optimization of reaction conditions for benzophenone preparation.
Entry | Variations from indicated condition | Conversion of B1 a (%) | Yield a (%) | |
---|---|---|---|---|
C1 | D1 | |||
1 | no variation | 87 | 86 | 1 |
2 | C-TiO2 instead of 0.85-Pd/C-TiO2 | 0 | 0 | 0 |
3 | commercial TiO2 instead of 0.85-Pd/C-TiO2 Pd/commercial TiO2 | 0 | 0 | 0 |
4 b | 70 | 66 | 4 | |
5 b | Pd(OAc)2 instead of 0.85-Pd/C-TiO2 | 83 | 83 | 0 |
6 b | Pd/SiO2 | 85 | 85 | 0 |
7 b | Pd/Al2O3 | 82 | 82 | 0 |
8 | without Na2CO3 | 8 | 8 | 0 |
9 | 1 equiv. Na2CO3 | 60 | 58 | 2 |
10 | NaHCO3 instead of Na2CO3 | 58 | 55 | 3 |
11 | K2CO3 instead of Na2CO3 | 80 | 77 | 3 |
12 | Cs2CO3 instead of Na2CO3 | 72 | 8 | 64 |
13 | A1 (0.2 mmol) | 21 | 16 | 5 |
14 | A1 (0.6 mmol) | 47 | 46 | 1 |
15 | in air | trace | trace | trace |
16 | methanol instead of acetonitrile | >99 | 0 | >99 |
17 | acetone instead of acetonitrile | 55 | 50 | 5 |
18 | in dark | 0 | 0 | 0 |
19 | at 323 or 373 K without irradiation | 0 | 0 | 0 |
20 | Xenon lamp with 350 nm bandpass filter | 49 | 49 | 0 |
21 | Xenon lamp with 365 nm bandpass filter | 28 | 27 | 1 |
22 | λ ≧ 400 nm | 0 | 0 | 0 |
23 | λ ≧ 420 nm | 0 | 0 | 0 |
Entry | Substrate | Catalyst | Condition | Time (h) | Yield (%) | Ref. |
---|---|---|---|---|---|---|
1 | | Co3O4/Ag@C3N4 | hv, r.t. | 5 | 71 | [ |
2 | | Fe2O3 | r.t. | 0.25 | 95 | [ |
3 | | Nano-SiO2@CoCl3-C12IL | 100 °C | 8 | 89 | [ |
4 | | NiO | r.t. | 2 | 91 | [ |
5 | | SiO2-Si-SCF3 | 80 °C | 12 | 93 | [ |
6 | | (Cu1Pd2)1.3@PCN-222(Co) | hv, r.t. | 5 | 90 | [ |
7 | | Pd/fibrous nanosilica | 100 °C | 6 | 99 | [ |
8 | | Ni@Pd/CNT | 150 °C | 0.5 | 98 | [ |
9 | | Pd/g-C3N4 | 100 °C | 16 | 61 | [ |
10 | | SBA-16/DFMP-Pd | 80 °C | 0.25 | 94 | [ |
11 | | 0.85-Pd/C-TiO2 | hv, r.t. | 10 | 98 | This work |
Table 2 Comparative analysis of the catalytic performance of 0.85-Pd/C-TiO2 with reported catalysts.
Entry | Substrate | Catalyst | Condition | Time (h) | Yield (%) | Ref. |
---|---|---|---|---|---|---|
1 | | Co3O4/Ag@C3N4 | hv, r.t. | 5 | 71 | [ |
2 | | Fe2O3 | r.t. | 0.25 | 95 | [ |
3 | | Nano-SiO2@CoCl3-C12IL | 100 °C | 8 | 89 | [ |
4 | | NiO | r.t. | 2 | 91 | [ |
5 | | SiO2-Si-SCF3 | 80 °C | 12 | 93 | [ |
6 | | (Cu1Pd2)1.3@PCN-222(Co) | hv, r.t. | 5 | 90 | [ |
7 | | Pd/fibrous nanosilica | 100 °C | 6 | 99 | [ |
8 | | Ni@Pd/CNT | 150 °C | 0.5 | 98 | [ |
9 | | Pd/g-C3N4 | 100 °C | 16 | 61 | [ |
10 | | SBA-16/DFMP-Pd | 80 °C | 0.25 | 94 | [ |
11 | | 0.85-Pd/C-TiO2 | hv, r.t. | 10 | 98 | This work |
Fig. 4. (a) Recycling property of 0.85-Pd/C-TiO2 and Pd/SiO2. (b) XRD patterns of 0.85-Pd/C-TiO2 before and after reaction. (c) XPS spectra 0.85-Pd/C-TiO2 before and after reaction. (d) TEM images as well as Pd particle size distribution of 0.85-Pd/C-TiO2 after reaction.
Fig. 5. The 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapping ESR spectra of benzaldehyde (a) and iodobenzene (b) for ?C under UV light irradiation.
Fig. 6. (a) DFT calculations of the possible pathway for palladium-catalyzed synthesis of benzophenone from benzaldehyde and iodobenzene. (b) Possible mechanism for the synthesis of benzophenone.
|
[1] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism [J]. Chinese Journal of Catalysis, 2024, 58(3): 237-246. |
[2] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
[3] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[4] | Jian Dang, Weijie Li, Bin Qin, Yuchao Chai, Guangjun Wu, Landong Li. Self-adjusted reaction pathway enables efficient oxidation of aromatic C-H bonds over zeolite-encaged single-site cobalt catalyst [J]. Chinese Journal of Catalysis, 2024, 57(2): 133-142. |
[5] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals [J]. Chinese Journal of Catalysis, 2023, 52(9): 99-126. |
[6] | Meng Zhao, Jing Xu, Shuyan Song, Hongjie Zhang. Core/yolk-shell nanoreactors for tandem catalysis [J]. Chinese Journal of Catalysis, 2023, 50(7): 83-108. |
[7] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[8] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[9] | Long Jiao, Hai-Long Jiang. Metal-organic frameworks for catalysis: Fundamentals and future prospects [J]. Chinese Journal of Catalysis, 2023, 45(2): 1-5. |
[10] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[11] | Xuefei Weng, Shuangli Yang, Ding Ding, Mingshu Chen, Huilin Wan. Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2022, 43(8): 2001-2009. |
[12] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[13] | Chunpeng Wang, Zhe Wang, Shanjun Mao, Zhirong Chen, Yong Wang. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2022, 43(4): 928-955. |
[14] | Hui Chen, Bo Zhang, Xiao Liang, Xiaoxin Zou. Light alloying element-regulated noble metal catalysts for energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635. |
[15] | Tao Zhang, Xiaochi Han, Nhat Truong Nguyen, Lei Yang, Xuemei Zhou. TiO2-based photocatalysts for CO2 reduction and solar fuel generation [J]. Chinese Journal of Catalysis, 2022, 43(10): 2500-2529. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||