Chinese Journal of Catalysis ›› 2024, Vol. 59: 15-37.DOI: 10.1016/S1872-2067(23)64611-X
• Reviews • Previous Articles Next Articles
Cheng Chenga,b, Wei Renb, Hui Zhanga,*(), Xiaoguang Duanb,*(), Shaobin Wangb,*()
Received:
2023-12-30
Accepted:
2024-01-23
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: About author:
Hui Zhang (School of Resource and Environmental Sciences, Wuhan University) received his Ph.D. degree from South China University of Technology (China) in 1995. Since then, he has been working at Wuhan University and is currently a professor. His research interests focus on environmental chemistry, environmental catalysis and advanced oxidation technologies for environmental remediation. He has published more than 180 refereed journal papers with citation over 18000 and H-index of 77. He was recognized as highly cited researcher (Cross-Field) in 2022 and 2023 by Clarivate and was in the list of highly cited Chinese authors (Environmental Science and Engineering) by Elsevier in 2020, 2021 and 2022. He served as a member of the editorial board of Journal of Hazardous Materials.Supported by:
Cheng Cheng, Wei Ren, Hui Zhang, Xiaoguang Duan, Shaobin Wang. Single-atom iron catalysts for peroxymonosulfate-based advanced oxidation processes: Coordination structure versus reactive species[J]. Chinese Journal of Catalysis, 2024, 59: 15-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64611-X
Fig. 2. (a) A cascade anchoring strategy using oxygen functional groups as anchor sites. Reprinted with permission from Ref. [71]. Copyright 2019 Springer Nature. (b) A spatial confinement strategy using a ZIF-8 cage as a host. Reprinted with permission from Ref. [78]. Copyright 2017, John Wiley and Sons. (c) A defect design strategy using Di-vacancy on graphene as anchor sites. Reprinted with permission from Ref. [84]. Copyright 2018, Elsevier Inc. (d) A thermal atomization strategy to in situ transform metal NPs to single atoms. Reprinted with permission from Ref. [86]. Copyright 2018, John Wiley and Sons. (e) Structure evolution of a Fe-N4 site in a typical “bottom-up” synthesis route. Reprinted with permission from Ref. [87]. Copyright 2019, John Wiley and Sons.
Support | Synthetic method | Structure (lM-N) | Loading (wt%) | PMS conc. Cat. dosage | Pollutant (Conc.) | kobs (min-1) | Reactive species | Ref. |
---|---|---|---|---|---|---|---|---|
N-C | pyrolysis of Fe(OAc)2-phen complex anchored O-g-C3N4 in N2 at 600 °C | Fe-N4 (2.00 Å) Fe-Fe N-pyridinic | — | 0.4 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.24 | Surface-bond SO4•-/•OH, 1O2 | [ |
N-C | pyrolysis of mixture of Fe(acac)3 anchored carbon and DCD in N2 at 900 °C | Fe-N4 (2.04 Å) Fe-Fe, N-pyridinic, FeII | 9.0 | 0.4 mmol L-1 0.1 g L-1 | BPA (11.4 mg L-1) | 0.44 | SO4•-, •OH, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored pyrrole-phytic acid hydrogel in N2 at 700 °C and acid leaching | Fe-N3-P1, N-pyridinic, FeII | 2.32 | 0.65 mmol L-1 0.1 g L-1 | BPA (20 mg L-1) | 0.8 | SO4•-, •OH, O2•-, 1O2 | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored carbon black in N2 at 600 °C | Fe-N4 (2.04 Å), N-pyrrolic, FeII | 1.42 | 1.5 mmol L-1 0.1 g L-1 | ACP (7.6 mg L-1) | — | SO4•-, •OH | [ |
N-CNT | pyrolysis of mixture of Fe2(SO4)3, melamine, and O-CNT in N2 at 800 °C and acid leaching | Fe-N3 (1.97 Å), Fe-Fe N-pyridinic, FeII | 1.45 | 0.65 mmol L-1 0.2 g L-1 | PE (9.4 mg L-1) | 2.59 | SO4•-, •OH | [ |
N-C | pyrolysis of PPh3 encapsulated Fe-doped ZIF-8 in Ar at 900 °C and acid leaching | Fe-N3-P1, Fe-N: 1.90 Å, Fe-P: 2.26 Å, N-pyridinic, FeII | 0.77 | 0.5 mmol L-1 0.1 g L-1 | BPA (10 mg L-1) | 0.397 | •OH | [ |
N-C | pyrolysis of mixture of FePc anchored polystyrene and urea in Ar at 350 and 550 °C | Fe-N4, N-pyridinic, FeII | 2.44 | 1 mmol L-1 0.03 g L-1 | CP (1.3 mg L-1) | 1.663 | O2•-, 1O2 | [ |
N-C | CVD of the pyridine on ferrocene anchored CaO in Ar at 700 °C and acid leaching | Fe-N4 (1.95 Å), N-pyridinic, FeII | 0.61 | 3.25 mmol L-1 0.025 g L-1 | PE (50 mg L-1) | 2.139 | O2•- | [ |
N-C | CVD of mixture of Fe(acac)3 and pyridine on Mg(OH)2 in Ar at 800 °C and acid leaching | Fe-N4 (1.99 Å), N-pyridinic, FeII | 1.23 | 0.3 mmol L-1 0.03 g L-1 | SMX (10 mg L-1) | 0.815 | O2•- | [ |
N-C | pyrolysis of mixture of FeCl3, glucose, and DCD in Ar at 900 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 2.45 | 1 mmol L-1 0.05 g L-1 | NP (20 mg L-1) | 0.302 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl2 and ZnCl2 anchored silk fibroin in Ar at 900 °C and acid leaching | Fe-N4, N-pyridinic, FeII | 0.57 | 15 mmol L-1 0.1 g L-1 | BPA (50 mg L-1) | 1.952 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored COF (TpPa) in N2 at 700 °C | Fe-Nx | 2.14 | 0.65 mmol L-1 0.1 g L-1 | Orange II (20 mg L-1) | — | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3-phen complex anchored ZIF-8 derived carbon in Ar at 600 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 0.71 | 1.3 mmol L-1 0.2 g L-1 | BPA (25 mg L-1) | 0.104 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C and acid leaching | Fe-Nx | 0.56 | 0.65 mmol L-1 0.15 g L-1 | PE (20 mg L-1) | 0.3275 | 1O2 | [ |
N-CNT | pyrolysis of mixture of MIL-101(Fe) and ZIF-8 in N2 at 900 °C and in NH3 at 950 °C | Fe-N4 (2.01 Å), N-pyridinic, FeII | — | 0.5 mmol L-1 0.002 g L-1 | AO7 (50 mg L-1) | 0.811 | 1O2 | [ |
N-C | pyrolysis of mixture of FePc, KHCO3, and N-doped biochar in N2 at 900 °C and acid leaching | Fe-N4 (2.01 Å), N-pyridinic, FeII | 0.41 | 1.95 mmol L-1 0.8 g L-1 | RhB (0.1 g L-1) | 0.661 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 6.32 | 1 mmol L-1 0.1 g L-1 | SSZ (8.0 mg L-1) | 0.095 | 1O2 | [ |
N-C | pyrolysis of Fe(NO3)3 containing aerogel in N2 at 800 °C | Fe-N4 (1.50 Å), N-pyridinic, FeII | 2.17 | 1.3 mmol L-1 0.5 g L-1 | RhB (25 mg L-1) | 19.657 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(OAc)2-phen complex anchored biochar and melamine in N2 at 550 and 700 °C and acid leaching | Fe-N2-O2, Fe-N: 1.92 Å, Fe-O: 2.01 Å, N-pyridinic, FeII | — | 0.5 mmol L-1 0.05 g L-1 | SMX (10 mg L-1) | 0.0862 | 1O2 | [ |
ND | pyrolysis of FePc anchored ND in N2 at 300 °C. | Fe-N4 (1.96 Å), N-pyridinic, FeII | 1.0 | 0.975 mmol L-1 0.06 g L-1 | TC (15 mg L-1) | 0.283 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-glucose complex anchored carbon and melamine in Ar at 800 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 1.12 | 2 mmol L-1 0.05 g L-1 | BPA (22.8 mg L-1) | 1.99 | 1O2, SO4•-, •OH | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in Ar at 900 °C | Fe-Nx | 1.52 | 0.65 mmol L-1 0.15 g L-1 | SMX (10 mg L-1) | 1.1307 | 1O2, O2•-, SO4•-, •OH, ETP | [ |
N-C | pyrolysis of mixture of K2FeO4 and biochar in N2 at 800 °C and acid leaching | Fe-N3, N-graphitic | 2.4 | 1.63 mmol L-1 0.05 g L-1 | PE (20 mg L-1) | 1.096 | Catalyst-PMS* | [ |
N-C | pyrolysis of FePc encapsulated ZIF-8 in Ar at 900 °C | Fe-N4, N-pyridinic, FeII | 0.88 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.3179 | Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-citric acid complex and melamine in N2 at 800 °C | Fe-N4 (1.97 Å), N-pyrrolic, FeII | 4.8 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 8.4 | Catalyst-PMS* | [ |
N-C | pyrolysis of FeCl3 anchored g-C3N4-F127 complex in Ar at 600 °C and acid leaching | Fe-Nx | 2.67 | 0.15 mmol L-1 0.05 g L-1 | BPA (20 mg L-1) | — | Catalyst-PMS*, 1O2 | [ |
N-C | pyrolysis of Fe containing Enteromorpha in N2 at 900 °C and acid leaching | Fe-N2-O2, Fe-N: 2.224 Å, Fe-O: 1.979 Å, N-pyridinic, FeIII | 0.82 | 0.5 mmol L-1 0.1 g L-1 | ACP (10 mg L-1) | 0.1194 | Catalyst-PMS*, FeIV=O | [ |
N-C | pyrolysis of Fe-doped ZIF-8 in Ar at 900 °C | Fe-N4, FeIII | 0.93 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.24 | FeIV=O | [ |
N-CNT | pyrolysis of ball milled Fe-C3N4 and CNT in N2 at 700 °C | Fe-N4 (2.01 Å), N-pyridinic, FeIII | 5.81 | 0.4 mmol L-1 0.02 g L-1 | BPA (11.4 mg L-1) | 6.14 | FeIV=O | [ |
O,N-C | pyrolysis of mixture of FeCl3, DCD, and PMDA in air at 325 °C and acid leaching | Fe-N2-O2, Fe-N: 2.06 Å, Fe-O: 2.03 Å, N-pyridinic, FeII/FeIII | 0.84 | 1.0 mmol L-1 0.5 g L-1 | PE (9.4 mg L-1) | 0.039 | FeIV=O | [ |
N-C | pyrolysis of FeCl3 anchored tannic acid-melamine super-molecule in N2 at 800 °C and acid leaching | Fe-N4 (2.06 Å), N-pyrrolic, FeII | 2.4 | 0.4 mmol L-1 0.16 g L-1 | BPA (22.8 mg L-1) | 7.44 | FeIV=O | [ |
N-C | pyrolysis of Fe(NO3)3-phen complex anchored SBA-15 in N2 at 900 °C and alkaline/acid leaching. | Fe-N4 (1.92 Å), N-pyrrolic, FeIII | 0.62 | 0.1 mmol L-1 0.02 g L-1 | BPA (4.6 mg L-1) | — | FeIV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 800 °C and acid leaching | Fe-N5 (2.01 Å), N-pyridinic, FeIII | 1.2 | 1 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.675 | FeIV=O | [ |
P,S-C | pyrolysis of Fe(NO3)3 anchored and PZS polymers coated ZIF-8 in N2 at 900 °C | Fe-N4 (1.99 Å), N-pyridinic, FeII | — | 0.2 mmol L-1 0.02 g L-1 | OFX (7.2 mg L-1) | 1.68 | FeV=O | [ |
N-C | pyrolysis of mixture of Fe/Zn-lignin complex and DCD in N2 at 550 and 950 °C | Fe-N4 (1.98 Å), N-pyridinic, FeIII | 2.6 | 1 mmol L-1 0.1 g L-1 | CQP (10 mg L-1) | 0.128 | FeV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 700 °C and acid leaching. | Fe-N4 (2.00 Å), N-pyridinic, FeII | 2.0 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 0.274 | FeIV=O, Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe-MOF and melamine in in N2 at 600 °C | Fe-N4 (2.06 Å), N-pyridinic, FeII/FeIII | 5.91 | 0.5 mmol L-1 0.2 g L-1 | BPA (20 mg L-1) | 0.357 | FeV=O, SO4•-, •OH | [ |
Table 1 List of synthetic methods and structure properties of carbon-supported SAICs as well as their performance and mechanism for PMS activation.
Support | Synthetic method | Structure (lM-N) | Loading (wt%) | PMS conc. Cat. dosage | Pollutant (Conc.) | kobs (min-1) | Reactive species | Ref. |
---|---|---|---|---|---|---|---|---|
N-C | pyrolysis of Fe(OAc)2-phen complex anchored O-g-C3N4 in N2 at 600 °C | Fe-N4 (2.00 Å) Fe-Fe N-pyridinic | — | 0.4 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.24 | Surface-bond SO4•-/•OH, 1O2 | [ |
N-C | pyrolysis of mixture of Fe(acac)3 anchored carbon and DCD in N2 at 900 °C | Fe-N4 (2.04 Å) Fe-Fe, N-pyridinic, FeII | 9.0 | 0.4 mmol L-1 0.1 g L-1 | BPA (11.4 mg L-1) | 0.44 | SO4•-, •OH, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored pyrrole-phytic acid hydrogel in N2 at 700 °C and acid leaching | Fe-N3-P1, N-pyridinic, FeII | 2.32 | 0.65 mmol L-1 0.1 g L-1 | BPA (20 mg L-1) | 0.8 | SO4•-, •OH, O2•-, 1O2 | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored carbon black in N2 at 600 °C | Fe-N4 (2.04 Å), N-pyrrolic, FeII | 1.42 | 1.5 mmol L-1 0.1 g L-1 | ACP (7.6 mg L-1) | — | SO4•-, •OH | [ |
N-CNT | pyrolysis of mixture of Fe2(SO4)3, melamine, and O-CNT in N2 at 800 °C and acid leaching | Fe-N3 (1.97 Å), Fe-Fe N-pyridinic, FeII | 1.45 | 0.65 mmol L-1 0.2 g L-1 | PE (9.4 mg L-1) | 2.59 | SO4•-, •OH | [ |
N-C | pyrolysis of PPh3 encapsulated Fe-doped ZIF-8 in Ar at 900 °C and acid leaching | Fe-N3-P1, Fe-N: 1.90 Å, Fe-P: 2.26 Å, N-pyridinic, FeII | 0.77 | 0.5 mmol L-1 0.1 g L-1 | BPA (10 mg L-1) | 0.397 | •OH | [ |
N-C | pyrolysis of mixture of FePc anchored polystyrene and urea in Ar at 350 and 550 °C | Fe-N4, N-pyridinic, FeII | 2.44 | 1 mmol L-1 0.03 g L-1 | CP (1.3 mg L-1) | 1.663 | O2•-, 1O2 | [ |
N-C | CVD of the pyridine on ferrocene anchored CaO in Ar at 700 °C and acid leaching | Fe-N4 (1.95 Å), N-pyridinic, FeII | 0.61 | 3.25 mmol L-1 0.025 g L-1 | PE (50 mg L-1) | 2.139 | O2•- | [ |
N-C | CVD of mixture of Fe(acac)3 and pyridine on Mg(OH)2 in Ar at 800 °C and acid leaching | Fe-N4 (1.99 Å), N-pyridinic, FeII | 1.23 | 0.3 mmol L-1 0.03 g L-1 | SMX (10 mg L-1) | 0.815 | O2•- | [ |
N-C | pyrolysis of mixture of FeCl3, glucose, and DCD in Ar at 900 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 2.45 | 1 mmol L-1 0.05 g L-1 | NP (20 mg L-1) | 0.302 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl2 and ZnCl2 anchored silk fibroin in Ar at 900 °C and acid leaching | Fe-N4, N-pyridinic, FeII | 0.57 | 15 mmol L-1 0.1 g L-1 | BPA (50 mg L-1) | 1.952 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored COF (TpPa) in N2 at 700 °C | Fe-Nx | 2.14 | 0.65 mmol L-1 0.1 g L-1 | Orange II (20 mg L-1) | — | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3-phen complex anchored ZIF-8 derived carbon in Ar at 600 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 0.71 | 1.3 mmol L-1 0.2 g L-1 | BPA (25 mg L-1) | 0.104 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C and acid leaching | Fe-Nx | 0.56 | 0.65 mmol L-1 0.15 g L-1 | PE (20 mg L-1) | 0.3275 | 1O2 | [ |
N-CNT | pyrolysis of mixture of MIL-101(Fe) and ZIF-8 in N2 at 900 °C and in NH3 at 950 °C | Fe-N4 (2.01 Å), N-pyridinic, FeII | — | 0.5 mmol L-1 0.002 g L-1 | AO7 (50 mg L-1) | 0.811 | 1O2 | [ |
N-C | pyrolysis of mixture of FePc, KHCO3, and N-doped biochar in N2 at 900 °C and acid leaching | Fe-N4 (2.01 Å), N-pyridinic, FeII | 0.41 | 1.95 mmol L-1 0.8 g L-1 | RhB (0.1 g L-1) | 0.661 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 6.32 | 1 mmol L-1 0.1 g L-1 | SSZ (8.0 mg L-1) | 0.095 | 1O2 | [ |
N-C | pyrolysis of Fe(NO3)3 containing aerogel in N2 at 800 °C | Fe-N4 (1.50 Å), N-pyridinic, FeII | 2.17 | 1.3 mmol L-1 0.5 g L-1 | RhB (25 mg L-1) | 19.657 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(OAc)2-phen complex anchored biochar and melamine in N2 at 550 and 700 °C and acid leaching | Fe-N2-O2, Fe-N: 1.92 Å, Fe-O: 2.01 Å, N-pyridinic, FeII | — | 0.5 mmol L-1 0.05 g L-1 | SMX (10 mg L-1) | 0.0862 | 1O2 | [ |
ND | pyrolysis of FePc anchored ND in N2 at 300 °C. | Fe-N4 (1.96 Å), N-pyridinic, FeII | 1.0 | 0.975 mmol L-1 0.06 g L-1 | TC (15 mg L-1) | 0.283 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-glucose complex anchored carbon and melamine in Ar at 800 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 1.12 | 2 mmol L-1 0.05 g L-1 | BPA (22.8 mg L-1) | 1.99 | 1O2, SO4•-, •OH | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in Ar at 900 °C | Fe-Nx | 1.52 | 0.65 mmol L-1 0.15 g L-1 | SMX (10 mg L-1) | 1.1307 | 1O2, O2•-, SO4•-, •OH, ETP | [ |
N-C | pyrolysis of mixture of K2FeO4 and biochar in N2 at 800 °C and acid leaching | Fe-N3, N-graphitic | 2.4 | 1.63 mmol L-1 0.05 g L-1 | PE (20 mg L-1) | 1.096 | Catalyst-PMS* | [ |
N-C | pyrolysis of FePc encapsulated ZIF-8 in Ar at 900 °C | Fe-N4, N-pyridinic, FeII | 0.88 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.3179 | Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-citric acid complex and melamine in N2 at 800 °C | Fe-N4 (1.97 Å), N-pyrrolic, FeII | 4.8 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 8.4 | Catalyst-PMS* | [ |
N-C | pyrolysis of FeCl3 anchored g-C3N4-F127 complex in Ar at 600 °C and acid leaching | Fe-Nx | 2.67 | 0.15 mmol L-1 0.05 g L-1 | BPA (20 mg L-1) | — | Catalyst-PMS*, 1O2 | [ |
N-C | pyrolysis of Fe containing Enteromorpha in N2 at 900 °C and acid leaching | Fe-N2-O2, Fe-N: 2.224 Å, Fe-O: 1.979 Å, N-pyridinic, FeIII | 0.82 | 0.5 mmol L-1 0.1 g L-1 | ACP (10 mg L-1) | 0.1194 | Catalyst-PMS*, FeIV=O | [ |
N-C | pyrolysis of Fe-doped ZIF-8 in Ar at 900 °C | Fe-N4, FeIII | 0.93 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.24 | FeIV=O | [ |
N-CNT | pyrolysis of ball milled Fe-C3N4 and CNT in N2 at 700 °C | Fe-N4 (2.01 Å), N-pyridinic, FeIII | 5.81 | 0.4 mmol L-1 0.02 g L-1 | BPA (11.4 mg L-1) | 6.14 | FeIV=O | [ |
O,N-C | pyrolysis of mixture of FeCl3, DCD, and PMDA in air at 325 °C and acid leaching | Fe-N2-O2, Fe-N: 2.06 Å, Fe-O: 2.03 Å, N-pyridinic, FeII/FeIII | 0.84 | 1.0 mmol L-1 0.5 g L-1 | PE (9.4 mg L-1) | 0.039 | FeIV=O | [ |
N-C | pyrolysis of FeCl3 anchored tannic acid-melamine super-molecule in N2 at 800 °C and acid leaching | Fe-N4 (2.06 Å), N-pyrrolic, FeII | 2.4 | 0.4 mmol L-1 0.16 g L-1 | BPA (22.8 mg L-1) | 7.44 | FeIV=O | [ |
N-C | pyrolysis of Fe(NO3)3-phen complex anchored SBA-15 in N2 at 900 °C and alkaline/acid leaching. | Fe-N4 (1.92 Å), N-pyrrolic, FeIII | 0.62 | 0.1 mmol L-1 0.02 g L-1 | BPA (4.6 mg L-1) | — | FeIV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 800 °C and acid leaching | Fe-N5 (2.01 Å), N-pyridinic, FeIII | 1.2 | 1 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.675 | FeIV=O | [ |
P,S-C | pyrolysis of Fe(NO3)3 anchored and PZS polymers coated ZIF-8 in N2 at 900 °C | Fe-N4 (1.99 Å), N-pyridinic, FeII | — | 0.2 mmol L-1 0.02 g L-1 | OFX (7.2 mg L-1) | 1.68 | FeV=O | [ |
N-C | pyrolysis of mixture of Fe/Zn-lignin complex and DCD in N2 at 550 and 950 °C | Fe-N4 (1.98 Å), N-pyridinic, FeIII | 2.6 | 1 mmol L-1 0.1 g L-1 | CQP (10 mg L-1) | 0.128 | FeV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 700 °C and acid leaching. | Fe-N4 (2.00 Å), N-pyridinic, FeII | 2.0 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 0.274 | FeIV=O, Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe-MOF and melamine in in N2 at 600 °C | Fe-N4 (2.06 Å), N-pyridinic, FeII/FeIII | 5.91 | 0.5 mmol L-1 0.2 g L-1 | BPA (20 mg L-1) | 0.357 | FeV=O, SO4•-, •OH | [ |
Fig. 3. Fe loading (a), Fe-N bond length (b), and coordination structure (c) of single atom Fe sites in the reported SAICs for PMS activation (n: sampling number; Med.: the median value). (d) The model of a Fe-N4 site with four pyridinic N coordination. (e) The charge density difference around the metal site with the Bader charge value at Fe atom. (f) The electrostatic potentials of a Fe-N4 site and PMS molecule. Reprinted with permission from Ref. [144]. Copyright 2022 Elsevier Inc.
Fig. 5. The involved reactive species (a) and the Sankey diagram correlating the structure (b) of single-atom Fe sites with the generated ROS in SAICs/PMS systems.
Fig. 6. (a) PMS adsorption on a Fe-N4 site with hydroxy O, peroxy O and terminal O, and the corresponding adsorption energies and charge transfer numbers. (b) Pathways for the ROS generation on a Fe-N4 site. (c) Energy requirements for different ROS generation. Reprinted with permission from Ref. [144]. Copyright 2022, Elsevier Inc.
Fig. 7. Fundamentals of radical generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for their facilitated generation. Reprinted with permission from Ref. [111,113]. Copyright 2023, Elsevier Inc.
Fig. 8. In situ Raman spectra of the PMS interaction with SAIC (a) and the formation of surface-bound SO4* intermediate (b,c) during the generation of SO4?-. Reprinted with permission from Ref. [111,113]. Copyright 2023, Elsevier Inc. Reprinted with permission from Ref. [108]. Copyright 2021, American Chemical Society.
Fig. 9. (a) Generation of 1O2 on a Fe-N4 site through recombination of two SO5?- intermediates. Reprinted with permission from Ref. [123]. Copyright 2022, Elsevier Inc. (b) Generation of 1O2 in the O* combination mechanism. Reprinted with permission from Ref. [27]. Copyright 2021, John Wiley and Sons. (c) Generation of 1O2 from O2?- intermediates. Reprinted with permission from Ref. [127]. Copyright 2021, American Chemical Society. (d) Generation of 1O2 from dissolved O2. Reprinted with permission from Ref. [126]. Copyright 2023, American Chemical Society.
Fig. 10. Fundamentals of 1O2 generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for its facilitated generation. Reprinted with permission from Ref. [125]. Copyright 2023, Elsevier Inc.
Fig. 11. (a) EPR detection of O2?- as an intermediate for 1O2 generation. Reprinted with permission from Ref. [126]. Copyright 2022, American Chemical Society. (b,c) Proposed intermediates and reaction pathways for 1O2 generation based on the DFT calculation. Reprinted with permission from Ref. [27]. Copyright 2021, John Wiley and Sons.
Fig. 12. Fundamentals of catalyst-PMS* generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for its facilitated generation. Reprinted with permission from Ref. [129,133]. Copyright 2021, Elsevier Inc.
Fig. 13. (a) In situ Raman spectra for the detection of the catalyst-PMS* complex. Reprinted with permission from Ref. [130]. Copyright 2021, Elsevier Inc. (b) Open-circuit potential measurements to quantitatively determine the oxidation potential of the complex. Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons.
Fig. 14. (a) Generation of FeIV=O/FeV=O on a Fe-N4 site by heterolytic cleavage of the O-O bond of a Fe-N4-PMS complex. Reprinted with permission from Ref. [136]. Copyright 2021, Elsevier Inc. (b) Effect of spin-state of Fe sites for FeIV=O/FeV=O generation. Reprinted with permission from Ref. [143]. Copyright 2021, American Chemical Society. (c) Generation of FeIV=O on the adjacent Fe-N4 sites with Fe1-Fe1 distance of 4.1 ? through forming dual-site adsorption structure. Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons.
Fig. 15. Fundamentals of HVI generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for its facilitated generation. Reprinted with permission from Ref. [136]. Copyright 2021, Elsevier Inc. Reprinted with permission from Ref. [138]. Copyright 2022, John Wiley and Sons. Reprinted with permission from ref [139]. Copyright 2023, John Wiley and Sons.
Fig. 16. (a) In situ Raman detection of FeIV=O. Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons. (b) Time-resolved Raman spectra for the observation of the evolution of FeIV=O. Reprinted with permission from Ref. [135]. Copyright 2021, American Chemical Society. (c) Time-resolved Raman and synchrotron radiation-based FTIR spectra to identify HSO4- intermediate during high-valent metal-oxo species formation. Reprinted with permission from Ref. [167]. Copyright 2023, John Wiley and Sons.
|
[1] | Junlei Zhang, Wencong Liu, Biao Liu, Xiaoguang Duan, Zhimin Ao, Mingshan Zhu. Is single-atom catalyzed peroxymonosulfate activation better? Coupling with metal oxide may be better [J]. Chinese Journal of Catalysis, 2024, 59(4): 137-148. |
[2] | Yuting Liu, Beili Nie, Ning Li, Huifang Liu, Feng Wang. Chlorine radical-mediated photocatalytic C(sp3)-H bond oxidation of aryl ethers to esters [J]. Chinese Journal of Catalysis, 2024, 58(3): 123-128. |
[3] | Shuanglong Zhou, Liang Zhao, Zheng Lv, Yu Dai, Qi Zhang, Jianping Lai, Lei Wang. The nature of local oxygen radical boosts electrocatalytic ethanol to selectively generate CO2 [J]. Chinese Journal of Catalysis, 2023, 52(9): 154-163. |
[4] | Zhipeng Guan, Dongfeng Yang, Zhao Liu, Shuxiang Zhu, Xingxing Zhong, Huamin Wang, Xiangwei Li, Xiaotian Qi, Hong Yi, Aiwen Lei. Regioselective electrochemical oxidative radical ortho-(4 + 2)/ipso-(3 + 2) cyclization [J]. Chinese Journal of Catalysis, 2023, 52(9): 144-153. |
[5] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[6] | Lili Zhang, Yuhang Li, Zhenyu Guo, Yantao Li, Nian Li, Weipeng Li, Chengjian Zhu, Jin Xie. Photoredox deoxygenative allylation of carboxylic acids via selective 1,6-addition of acyl radicals to electron-deficient 1,3-dienes [J]. Chinese Journal of Catalysis, 2023, 50(7): 215-221. |
[7] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
[8] | Zhipeng Huang, Yang Yang, Junju Mu, Genheng Li, Jianyu Han, Puning Ren, Jian Zhang, Nengchao Luo, Ke-Li Han, Feng Wang. Controlling the reactions of free radicals with metal-radical interaction [J]. Chinese Journal of Catalysis, 2023, 45(2): 120-131. |
[9] | Haibo Chi, Wangyin Wang, Jiangping Ma, Ruizhi Duan, Chunmei Ding, Rui Song, Can Li. A synchronous defluorination-oxidation process for efficient mineralization of fluoroarenes with photoelectrocatalysis [J]. Chinese Journal of Catalysis, 2023, 55(12): 171-181. |
[10] | Ziye Zheng, Shuang Tian, Yuxiao Feng, Shan Zhao, Xin Li, Shuguang Wang, Zuoli He. Recent advances of photocatalytic coupling technologies for wastewater treatment [J]. Chinese Journal of Catalysis, 2023, 54(11): 88-136. |
[11] | Weixu Liu, Chang He, Bowen Zhu, Enwei Zhu, Yaning Zhang, Yunning Chen, Junshan Li, Yongfa Zhu. Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight irradiation [J]. Chinese Journal of Catalysis, 2023, 53(10): 13-30. |
[12] | Hao Tian, Bingjun Xu. Oxidative co-dehydrogenation of ethane and propane over h-BN as an effective means for C-H bond activation and mechanistic investigations [J]. Chinese Journal of Catalysis, 2022, 43(8): 2173-2182. |
[13] | Peng-Zi Wang, Wen-Jing Xiao, Jia-Rong Chen. Recent advances in radical-mediated transformations of 1,3-dienes [J]. Chinese Journal of Catalysis, 2022, 43(3): 548-557. |
[14] | Shaonan Zhang, Shi Cao, Yu-Mei Lin, Liyuan Sha, Cheng Lu, Lei Gong. Photocatalyzed site-selective C(sp3)‒H sulfonylation of toluene derivatives and cycloalkanes with inorganic sulfinates [J]. Chinese Journal of Catalysis, 2022, 43(3): 564-570. |
[15] | Huijie Wang, Xin Li, Xiaoxue Zhao, Chunyan Li, Xianghai Song, Peng Zhang, Pengwei Huo, Xin Li. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies [J]. Chinese Journal of Catalysis, 2022, 43(2): 178-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||