Chinese Journal of Catalysis ›› 2024, Vol. 59: 149-158.DOI: 10.1016/S1872-2067(23)64638-8
• Articles • Previous Articles Next Articles
Yuan Xianga, Jin Zhangb, Fei Huanga, Nantian Xiaoa, Yiyi Fana, Junhao Zhanga, Heng Zhengc, Jinwei Chenb,*(), Fan Zhanga,*()
Received:
2023-12-01
Accepted:
2024-02-04
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: Supported by:
Yuan Xiang, Jin Zhang, Fei Huang, Nantian Xiao, Yiyi Fan, Junhao Zhang, Heng Zheng, Jinwei Chen, Fan Zhang. One-pot photothermal upcycling of polylactic acid to hydrogen and pyruvic acid[J]. Chinese Journal of Catalysis, 2024, 59: 149-158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(23)64638-8
Fig. 1. HRTEM images of Pt/A-V-PCN (a), Pt/TiO2 (b), and Pt/CdS (c) after photo-deposition, with size distribution of Pt clusters presented in the inset. (d) XRD patterns of Pt/A-V-PCN, Pt/TiO2, and Pt/CdS. Light colors are A-V-PCN, TiO2, and CdS.
Fig. 2. (a) Hydrogen production rates at 10, 30, 60, 90, 120, and 150 °C over Pt/A-V-PCN, Pt/TiO2, and Pt/CdS (Inset: thermal catalytic (150 °C), photocatalytic (25 °C), and photothermal (150 °C) catalytic hydrogen production rates of Pt/A-V-PCN, Pt/TiO2, and Pt/CdS. Conditions: 30 mg catalyst, 135 μL H2PtCl6·6H2O, 9% LA solution, pH = 7.0, 300 W Xe lamp, 987 mW·cm-2, and 1 h). Wavelength-dependent AQY of Pt/A-V-PCN (b), Pt/TiO2 (c) and Pt/CdS (d) under irradiation with and without heating (Conditions: 30 mg catalyst, 135 μL H2PtCl6·6H2O, 9% LA solution, pH = 7.0, 300 W Xe lamp, 987 mW·cm-2, and 1 h).
Fig. 3. Electrochemical impedance spectroscopy and transient photocurrent response of Pt/A-V-PCN (a,b), Pt/TiO2 (c,d), and Pt/CdS (e,f) measured at different temperatures between 10 to 60 °C.
Fig. 4. (a) 1H NMR spectrum after photothermal catalytic reaction. (b) Liquid product selectivity of catalysts after reaction over three catalysts. (c) In situ ESR spectra in the presence of LA and DMPO. (d) Proposed mechanism of photocatalytic hydrogen production under visible-light irradiation of catalyst.
Fig. 5. (a) Optimized structures of the intermediates in LA oxidation on CdS (110) surface. (b) Energy diagram for catalytic LA oxidation. X-axis illustrates the reaction coordination; Y-axis illustrates the relative energy of each stage.
Fig. 6. (a) Distribution of products after upcycling of commercial plastics over Pt/CdS (Conditions: 0.15 g commercial PLA, 30 mg Pt/CdS, 40 mL H2O, 135 μL H2PtCl6·6H2O, NaOH 0.1 mL, He, 150 °C, 300 W Xe lamp, and 987 mW·cm-2). (b) Carbon yield after PLA photothermal reaction (Conditions: 0.15 g PLA, 30 mg Pt/CdS, 40 mL H2O, 135 μL H2PtCl6·6H2O, NaOH 0.1 mL, He, 150 °C, 300 W Xe lamp, and 987 mW·cm-2). (c) Time course of photocatalytic hydrogen production over Pt/CdS. (Conditions: 30 mg CdS, 135 μL H2PtCl6·6H2O, 0.15 g PLA, 40 mL H2O, NaOH 0.1 mL, 300 W Xe lamp, and 987 mW·cm-2). (d) Comparison of photocatalytic production rate of H2 and pyruvic acid in LA solution reported in the literature (I: [40], II: [15], III: [41], IV: [42], details in Table S5).
|
[1] | Defa Liu, Bin Sun, Shuojie Bai, Tingting Gao, Guowei Zhou. Dual co-catalysts Ag/Ti3C2/TiO2 hierarchical flower-like microspheres with enhanced photocatalytic H2-production activity [J]. Chinese Journal of Catalysis, 2023, 50(7): 273-283. |
[2] | Xiangxi Lou, Xuan Gao, Yu Liu, Mingyu Chu, Congyang Zhang, Yinghua Qiu, Wenxiu Yang, Muhan Cao, Guiling Wang, Qiao Zhang, Jinxing Chen. Highly efficient photothermal catalytic upcycling of polyethylene terephthalate via boosted localized heating [J]. Chinese Journal of Catalysis, 2023, 49(6): 113-122. |
[3] | Zhuogen Li, Qadeer Ul Hassan, Weibin Zhang, Lujun Zhu, Jianzhi Gao, Xianjin Shi, Yu Huang, Peng Liu, Gangqiang Zhu. Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3‒δ: Experimental and theoretical verification [J]. Chinese Journal of Catalysis, 2023, 46(3): 113-124. |
[4] | Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2023, 55(12): 44-115. |
[5] | Haijun Hu, Kailai Zhang, Ge Yan, Litong Shi, Baohua Jia, Hongwei Huang, Yu Zhang, Xiaodong Sun, Tianyi Ma. Precisely decorating CdS on Zr-MOFs through pore functionalization strategy: A highly efficient photocatalyst for H2 production [J]. Chinese Journal of Catalysis, 2022, 43(9): 2332-2341. |
[6] | Long Sun, Lingling Li, Juan Yang, Jiajie Fan, Quanlong Xu. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 350-358. |
[7] | Jie Jiang, Guohong Wang, Yanchi Shao, Juan Wang, Shuang Zhou, Yaorong Su. Step-scheme ZnO@ZnS hollow microspheres for improved photocatalytic H2 production performance [J]. Chinese Journal of Catalysis, 2022, 43(2): 329-338. |
[8] | Cong Peng, Lixiao Han, Jinming Huang, Shengyao Wang, Xiaohu Zhang, Hao Chen. Comprehensive investigation on robust photocatalytic hydrogen production over C3N5 [J]. Chinese Journal of Catalysis, 2022, 43(2): 410-420. |
[9] | Ya-Jie Liu, Lin Geng, Yao Kang, Wei-Hui Fang, Jian Zhang. Odd-membered cyclic hetero-polyoxotitanate nanoclusters with high stability and photocatalytic H2 evolution activity [J]. Chinese Journal of Catalysis, 2021, 42(8): 1332-1337. |
[10] | Xiaoxue Zhao, Jinze Li, Xin Li, Pengwei Huo, Weidong Shi. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants [J]. Chinese Journal of Catalysis, 2021, 42(6): 872-903. |
[11] | Kailin Wang, Tianqi Wang, Quazi Arif Islam, Yan Wu. Layered double hydroxide photocatalysts for solar fuel production [J]. Chinese Journal of Catalysis, 2021, 42(11): 1944-1975. |
[12] | Yukai Chen, Yu Wang, Jiaojiao Fang, Baoying Dai, Jiahui Kou, Chunhua Lu, Yuanjin Zhao. Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(1): 184-192. |
[13] | Kai Zhu, Jie Ou-Yang, Qian Zeng, Sugang Meng, Wei Teng, Yanhua Song, Sheng Tang, Yanjuan Cui. Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction [J]. Chinese Journal of Catalysis, 2020, 41(3): 454-463. |
[14] | Ziyan Zhao, Dmitry E. Doronkin, Yinghao Ye, Jan-Dierk Grunwaldt, Zeai Huang, Ying Zhou. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst [J]. Chinese Journal of Catalysis, 2020, 41(2): 286-293. |
[15] | He Ma, Changhua Wang, Songmei Li, Xintong Zhang, Yichun Liu. High-humidity tolerance of porous TiO2(B) microspheres in photothermal catalytic removal of NOx [J]. Chinese Journal of Catalysis, 2020, 41(10): 1622-1632. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||